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Traction is a two-dimensional phenomenon

• Everyone knows that the idealized rectangular patches 
that we use to model stick (entry) and microslip (exit) 
zones are not realistic. But, we’ve had nothing better.

• The circumferential extent of one zone relative to the 
other varies across the web, except in the most ideal 
case of pure MD stress at an aligned and uniform roller.

• It affects the amount of spreading that can be supported 
on concave and curved rollers.

• The absence of a stick zone over even a small portion of 
the web width will negate the most fundamental 
assumption we make in the analysis of lateral behavior –
isolation of spans.



For example

• This is a plot of the MD 
stress contours of the 
entering and exit spans of 
a concave roller.

• To get the boundary 
conditions at the 
upstream end of the exit 
span, it was assumed
– That there was no microslip

zone on the roller.

– The shape of the relaxed web 
edge exiting the roller was 
forced to match the relaxed 
shape at the entry.

• Clearly something is 
missing and it happened 
on the roller.



This paper is a beginning

It provides a criterion for predicting when a web will lose 

traction at the entry of a roller and, starting from first 

principles, defines some of the concepts and issues 

necessary for dealing with the microslip zone.



Method of analysis

• This analysis is based on the method presented in the 

author’s 2005 paper “A New Method for Analyzing the 

Deformation and Lateral Translation of a Moving Web”.

• The web span is assumed to be in a steady state so that 

it can be treated as a stationary membrane with 

boundary conditions that are consistent with the flow of 

an elastic medium. At the downstream roller:

– Particle motion on entry to the downstream roller must match the 

velocity vector of the surface of the roller (normal entry rule).

– Mass flow at each point across the web must remain constant 

from one end of the span to the other (normal strain rule). 



Method of analysis

• For a 2-D problem, the essential physics of the web is 
embodied in two 2nd order partial differential equations.
– These are the classical equations of elasticity – the equilibrium 

of forces – and the constitutive equations specifying the relation 
between stress and strain in the material.

– If finite displacements are involved, these equations may require 
nonlinear terms to describe the deformation.

• Appropriate boundary conditions are established and the 
equations are solved numerically.
– One of the easiest ways to do this today is to use a general-

purpose FEA PDE solver.

– If the solver converges and the boundary conditions are met, 
then the solution satisfies the physical laws inherent in the 
equations.



Prior work

• An excellent review of traction in web handling was 

presented by Dilwyn Jones at the 2001 IWEB 

conference. It has an excellent bibliography.

• Among the papers cited is the excellent work done at the 

WHRC by Dr. Good and Keith Ducotey.

• In 1995 Jones and Zahlan reported on an interesting 

qualitative study using continuum mechanics software 

(ABAQUS).

• The one-dimensional capstan model continues to be the 

mainstay of web handling. 



Assumptions

• The effect of air lubrication is accounted for in the 
coefficient of friction.

• The web is in a steady state.

• In the stick zone, the static coefficient of friction is used. 
The dynamic value applies in the microslip zone.

• In this analysis the linear equations of elasticity will be 
used when the web is on the roller. However, there is no 
obstacle to using the nonlinear equations if needed.

• The roller or web may be nonuniform. But the roller has 
a straight axis.

• The x-y coordinate system will be rotated to match the 
roller position.



Boundary conditions

• At the upstream end of a span the MD displacement is 

zero and the CD displacement is –μσx/E (Poisson 

contraction).

• At free edges, CD and shear stresses are zero.

• At the downstream end, particle paths are aligned with 

the direction of motion of the roller surface (normal 

entry). Strain in the direction of particle paths is related 

to the strain at the entry of the previous roller by the 

equations below (normal strain).
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Generalized conditions for steady state flow 

of an elastic solid

• The boundary conditions of the previous slide are 

actually special cases of general relationships that apply 

to steady state flow of an elastic solid. In what follows, it 

will be useful to have these concepts defined.

• In the 2005 paper it was shown that the steady state 

trajectory of a particle in a deformed web makes an 

angle ψ with the MD direction defined by,
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Generalized conditions for steady state flow 

of an elastic solid

• Furthermore, the strain in the direction of the particle 

trajectory must satisfy the requirement for constant mass 

flow.  At every point in the web the following relationship 

between strain and velocity in the direction of the 

trajectory must be,

• If the nonlinear equations of elasticity are used, the 

strain subscripted with ψ is easily obtained as the strain 

corresponding to the deformed x coordinate. 
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Equations of equilibrium on a roller surface



Equations of equilibrium on a roller surface

• Equating forces in the θ direction.

• Equating forces in the y direction.

• Since r is constant, rdθ may be replace by a single 
variable, which may as well be called x, the 
circumferential position.
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Equations of equilibrium unwrapped

• Equations of equilibrium.

• In the x direction

• In the y direction

• The right hand terms may be thought of as friction 
stresses. They may be treated vectorially, like body 
forces.
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The friction stress

• In the unwrapped model, the roller surface may be 

thought of as a flat plane under the web and with a 

normal component of pressure that was caused by the 

cylindrical geometry.

• The normal component of stress is a function of the MD 

stress.

• So,
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The stick zone

• Except for the trivial case of a uniform web at a uniform, 

aligned roller, the surface friction of the roller must 

provide the reaction stresses required to meet the 

demands of the normal entry and normal strain rules.

• For example, in the case of a misaligned roller, there are 

shear stresses that must be balanced by something 

external to the web.

• In the case of a concave roller there are both shear and 

CD stresses to balance.



The stick zone

• Here’s the concave roller 
example discussed earlier.

• The shaded area has been 
drawn in by hand to 
represent a hypothetical 
stick zone.

• The line of demarcation 
between the stick and 
microslip zones is a wild 
guess. All we can say with 
confidence is that there 
must be one.

• However, we can say 
something about the stress 
pattern in the stick zone. 



The stick zone

• There is no x variation in the stress!

• You can imagine the web entering onto the roller as 

series of identical narrow strips parallel to the roller axis.

• So in the equations of equilibrium, the derivatives with 

respect to x will disappear and those with respect to y 

will be fixed.
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The stick zone

• The values for the friction stresses, Sx and Sy , are now 

fixed as,

• And for the web to stay in place on the roller, the vector 

sum of Sx and Sy must not exceed the maximum force 

per unit area created by friction. Therefore,
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The stick zone

• The criterion for no slipping is therefore,

• This is only a criterion for existence of the stick zone. It 

says nothing about the direction or consequences of 

slipping.

• The term on the left will be called the stress rate and the 

one on the right the friction rate. Both have units of 

stress per unit length.
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Application of the stick criterion to a twisted 

web experiment

• The next slide will show the result of applying the slip 

criterion to a twisted web experiment reported by Good 

and Straughan in 1999. They observed that at low 

tensions it took much more twist to create a wrinkle than 

at higher tensions – a situation similar to regime II 

wrinkling on a misaligned roller.

• The authors suggested that low tension led to low 

traction and this allowed the web to flatten on the roller.

• A typical low tension case was:

– Twist angle = 5 degrees, span length = 0.108 m, width = 0.152 

m, thickness = 23.4e-6 m, modulus = 4.13e9 Pa, tension = 26.7 

N, coefficient of friction = 0.3, roller diameter = 0.0736 m



Application of the stick criterion to a twisted 

web experiment

• The curve labeled (b) is the 
friction rate.

• The curve labeled (a) is the 
stress rate.

• Wherever the stress rate 
exceeds the friction rate, 
slipping will occur.

• It’s obviously slipping at the 
edges and very close to 
slipping everywhere else.

• All the low tension cases 
looked like this.

• In all the cases where 
“normal” behavior was 
observed, there was ample 
separation between the 
curves.



Application of the stick criterion to a concave 

spreader

• The next three slides will show how the criterion would work 
when applied to a concave roller. This is a hypothetical 
example which has not been confirmed by experiment.

• Application parameters are:

– Span length = 20 inches

– Width = 60 inches

– Modulus = 50,000 psi

– Poisson ratio = 0.35

– Thickness = 0.001 inch

– Roller diameter = 6 inches

– The roller is 72 inches wide with a circular depth profile

– Depth at the center = 0.05 inch

– Results at three tensions are shown, 0.5, 1 and 2 pli



Application of the stick criterion to a concave 

spreader (0.5 pli)

• The curve labeled (a) is 
the stress rate.

• The top curve labeled (b) 
is the friction rate for a 
coefficient of friction of 
0.35.

• The curve labeled (c) is 
the friction rate for a 
coefficient of 0.035.

• So at this tension, you 
could expect good results 
provided the line speed 
was low enough that air 
lubrication isn’t a factor.



Application of the stick criterion to a concave 

spreader (1.0 pli)

• This is better. But, it’s 

still marginal at a 

friction coefficient of 

0.035



Application of the stick criterion to a concave 

spreader (2.0 pli)

• Increasing tension 
continues to improve 
the situation.

• An important point to 
note here is that the 
friction rate is directly 
proportional to the 
coefficient of friction 
and the MD stress. But, 
the y-axis stresses are 
usually influenced more 
by geometry than 
tension.



Application of the stick criterion to a 

cambered web

• Using the model presented in the author’s 2005 paper, 

“Effects of Concave Rollers, Curved-Axis Rollers and 

Web Camber on the Deformation and Translation of a 

Moving Web”, the stick criterion was applied to a 

cambered web.

• The application parameters were taken from a series of 

experiments reported by Swanson in his 1999 IWEB 

paper “Mechanics of Non-Uniform Webs”. 



Application of the stick criterion to a 

cambered web

• The parameters for the first case are:

– Span length = 2 m

– Width = 0.305 m

– Thickness = 23.4 microns

– Radius of curvature of web = 139 m

– Modulus = 3.45 GPa

– Poisson ratio = 0.35 (assumed)

– Avg tension = 66 N

– Roller diameter = 7.6 cm

– Coefficient of friction = 0.20



Application of the stick criterion to a 

cambered web

• The stress rate is 

insignificant 

compared to the 

friction rate. So, there 

is no chance of 

slipping.



Application of the stick criterion to a 

cambered web

• Another test in the Swanson series is shown in the next 

slide. In this case the average tension was just high 

enough to avoid slackness on the long edge of the web.

• Application parameters were the same as the previous 

case except for the following,

– Span length = 0.67 m

– Radius of curvature of web = 185 m

– Avg tension = 22 N



Application of the stick criterion to a 

cambered web

• As would be 

expected, the friction 

and stress rates cross 

at the long edge.

• This would obviously 

not be a good 

production situation.



What happens if the web doesn’t satisfy the 

stick criterion?

• If the stick criterion can’t be met on some parts of the 

line of contact, then, at those places the normal entry 

and normal strain boundary conditions can’t be satisfied.

• Does the web just squirm around a bit at the entry and 

find a new stress state farther on that allows it to satisfy 

the boundary conditions?

• Consider the case of a concave roller.



Slipping on a concave roller

• The reason a web spreads on a concave roller is that 

this is the only way it can deform so that it 

simultaneously satisfies the normal entry and normal 

strain conditions.

• The normal entry rule insures that in the steady state 

there will be no further lateral motion without slipping and 

the normal strain rule ensures that the mass flow rate at 

every point across the web is constant. If these 

conditions can’t be satisfied at the line of entry, how will 

they be satisfied farther in?



What happens if the web doesn’t satisfy the 

stick criterion on a concave roller?



What happens if the web doesn’t satisfy the 

stick criterion on a concave roller?



The microslip zone

• In the steady state, if the stick criterion can’t be met on 

some portion of the roller surface, then, the web must be 

moving relative to the surface at that location.

• Maybe it eventually adjusts its stresses so it can stick.

• But, in any event, conservation of mass must prevail.

• And that takes us to the microslip zone.



The microslip zone

• In the microslip zone the web is by definition slipping 

relative to the roller surface and we can be sure that the 

force of friction will be oriented to oppose that motion.

• Furthermore, the friction rate we developed in the stick 

zone discussion can be applied; but it will always have 

its maximum value. So,

• There is now the question of direction.
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The microslip zone

• The direction must be the same as the particle motion 

discussed at the beginning. The angle, ψ, relative to the 

x-axis is,

• With this information we can now write the equations of 

equilibrium for the microslip zone as,
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The microslip zone

• Since the velocity vector of the particle motion must always be 
tangent to the particle paths (analogous to streamlines in a 
fluid), it seems reasonable to assume that ψ will always be 
small and the sign of the friction term will depend only on 
whether the roller is driving (web velocity less than the roller 
surface) or braking (web velocity greater than the roller 
surface).

• This seems wonderful at first. Equations of equilibrium have 
now been developed for both zones. Unfortunately, something 
more is needed.

• The choice of equilibrium equations, stick or microslip, 
depends on knowing where the transition from stick to slip 
occurs. But, the line of transition isn’t known until the solution 
is available. The problem is illustrated in the following slide.



The microslip zone

• If a thin latex band is 
draped over a roller with 
weights on each end to 
produce tension, a 
microslip zone will 
develop on each side.

• If progressively more 
weight is added to one 
side, the microslip zone 
on that side lengthens 
until it intersects the 
other and the band then 
slips off the roller.



The microslip zone

• If instead of adding 
weight, the roller is 
rotated, the upstream 
microslip zone is 
consumed until only a 
single longer one exists 
on the downstream 
side.

• In both cases the total 
tension differential is 
supported by microslip.

• This behavior is a 
challenge to model with 
existing tools.



The importance of the microslip zone

• It is the zone in which torque is transferred between the 

roller and the web.

• It is the zone where stresses transferred from the 

previous span have their first effect.

• Nonuniform stress downstream of a roller can cause part 

of a microslip zone to extend all the way to the line of 

entry, thus invalidating assumptions of isolation from 

downstream effects. Furthermore, the downstream 

effects could be caused, in part, by strain that is 

transferred from the upstream side.



Some interesting observations of web 

behavior on rollers

• Troughs at the 

exit of a driven 

roller.



Wrinkle formation



Wrinkle formation



Wrinkle forming



Greasing the roller



Conclusions

• A general model for two-dimensional steady state flow of 
an elastic web has been presented.

• Equations of equilibrium, including friction, for a web on 
a roller (straight but not necessarily uniform) have been 
developed from first principles.

• It has been mathematically demonstrated that if a web 
on a roller is flexible enough to be treated as a 
membrane and remains in contact with the roller, it may 
be treated as though it is flat. It should be noted that the 
ability to make this transformation suggests that when 
bending stiffness can be ignored, the cylindrical shape of 
the web on a roller imparts no special mechanical 
attributes to it.



Conclusions

• A two-dimensional criterion has been established for the 
existence of a stick zone at the entry to a roller. This 
criterion is, in effect, a mathematical definition of the 
stick zone.

• Applications of the stick criterion to concave rollers and a 
cambered web have been illustrated.

• Equations of equilibrium for the microslip zone have 
been developed. But, it is not yet clear how to 
incorporated them into a comprehensive model that can 
be numerically modeled.

• Photographs illustrating wrinkling at both the entry and 
exit of a roller have been presented.



Thank you

Jerry Brown
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