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ABSTRACT 

Though conservation of mass has played a prominent role in modeling longitudinal 
tension, it has seen limited use in modeling problems where lateral behavior is important. 
This may be due to the fact that most lateral modeling has been done with methods 
borrowed from structural analysis. These have advantages. They are well-tested and 
provide closed-form solutions. However, they tend to be specific to particular structural 
problems and do not provide a conceptual framework in which conservation of mass can 
be incorporated. For example, when using beam theory to analyze deflection due to a 
misaligned roller, it isn’t obvious that conservation of mass has anything to do with the 
problem. But, in fact, when viewed from the standpoint of two-dimensional elasticity 
theory, it can be shown that it is responsible for a key boundary condition of the beam 
theory model – the famous (to web handling specialists) zero moment condition. 

Elasticity theory is the obvious candidate for two-dimensional and three-dimensional 
modeling. Unfortunately, it is viewed by many as a last choice because it requires the use 
of partial differential equations that can only be solved numerically. This is not the 
problem it once was. FEA software is now so fast and versatile that it can be used 
interactively. With turn-around times of only minutes, it can even be used as a tool for 
learning elasticity theory.  

A method for using elasticity theory is described in a 2005 IWEB paper, “A New 
Method for Analyzing the Deformation and Lateral Translation of a Moving Web” [1]. It 
shows how to set up and solve a wide range of lateral behavior problems. A key 
boundary condition for the method, called the normal strain rule, relies on conservation 
of mass. A mathematical statement of this rule is, 
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where the subscripts 1 and 2 refer to the upstream and downstream rollers, respectively, 
and V and ε refer to the velocities and strains at the point of entry to the rollers. This 
relationship is applied as a boundary condition to each increment of web width and can, 
therefore, model lateral non-uniformities in both the web and roller. 

This paper will show that the normal strain rule is a special case of a more 
comprehensive concept that provides a framework for solving a broader scope of 
problems than contemplated in 2005, especially those in which the relaxed web is not 
flat. It will also introduce a computationally efficient method for implementing this 
concept by treating all webs, flat or otherwise, as membranes in a two-dimensional frame 
of reference.  

To be of practical use to investigators, the concepts discussed here and in the 2005 
paper [1] require the use of numerical analysis software to solve the partial differential 
equations. Adaptation of the mathematics to the requirements of a solver is not a trivial 
task. Therefore, in the hope of facilitating work by others in this area, I will make 
available the solver script for a misaligned roller to anyone who requests it.  

NOMENCLATURE 

CD  Cross web direction 
MD        Machine direction 
h  Thickness (m) 
i, j, k  Unit vector for x,y,z coordinate system 

, ,x y zi i i
  

 Unit vectors for , ,x y z   coordinate system 
Q  Specific mass flow, kg/m/s 
Rα  Major radius of the torus (toroidal radius), m 
Rβ  Minor radius of the torus (poloidal radius), m 
Ro  Radius of curvature of long side of cambered web, m 
Vo  Circumferential velocity of long side of cambered web, m/s 
Vr  Velocity of relaxed web in direction of x-coordinate, m/s 
Vs  Velocity of stressed web along curvilinear x -coordinate, m/s 
u  Displacement in x-direction (or α-direction for the baggy web), m 
v  Displacement in y-direction (or for β-direction for the baggy web), m 
w  Displacement in z-direction (or normal to surface for baggy web), m 
x, y, z Cartesian coordinates of relaxed web, m 

, ,x y z    Curvilinear coordinates of deformed web (under stress), m 
α  Major angle of torus (toroidal angle), radians 
β  Minor angle of torus (poloidal angle), radians 
ε  Strain 
ρ  Density (kg/m3) 
σ         Stress (N/m2) 
ψ  Angle of x  coordinate relative to x coordinate, radians 

Subscripts 
avg  Indicates a cross-web average value 
d  At downstream roller 
r  Indicates relaxed (or reference) state of web 
s  Indicates stressed (or current) state of web 
u  At upstream roller 
x, y, z Cartesian coordinates of relaxed web 



     , ,x y z    Coordinates of deformed web (under stress) 

, , Rα β   Curvilinear coordinates of deformed baggy web 

HISTORY  

The first known use of equation (1) was by none other than Osborne Reynolds in a 
brief paper [2] on belt drives.  Judging from the literature, belt drives, during the 19th 
century, stirred a remarkable amount of controversy. One of the subjects of considerable 
debate was the origin of the phenomenon of creep. It had long been known that driver 
and driven pulleys don’t have the speed relation one would expect from their relative 
diameters. The driven pulley always turns slower than the diameter ratio predicts. This is 
known as creep. Most early investigators believed it had something to do with friction. 
Reynolds correctly attributed it to the difference in strains of the belt as it entered and left 
a pulley. As a later investigator, would report in 1928 (Swift) [3], “the mechanics of belt 
action was meantime advanced by Osborne who, in 1874 showed that with an elastic 
driving belt there must inevitably be a loss of speed owing to the extension and 
contraction of the belt, and that this loss of speed must increase as the tension difference 
became greater.” In that case, the subscripts in (1) applied to the tight and slack segments 
of the belt.  

Shelton used the same relationship for another purpose in his 1986 paper “Dynamics 
of Web Tension Control with Velocity or Torque Control” [4]. In that context, he 
referred to it as the concept of transport of strain. This name was intended to emphasize 
the dependence of tension in any span on the tension in the one preceding it. The 
subscripts in that case refer to adjacent spans and the values of velocity and strain are 
understood to be average values. 

THE CONCEPTUAL FRAMEWORK 

The following analysis is presented for a rectangular relaxed web. But, it will 
become obvious that it is also valid for a relaxed web that is a surface of revolution with 
orthogonal curvilinear coordinates, provided that one of the coordinates is aligned with 
the paths taken by points on the surface as it revolves about the axis of revolution. 
Among the surfaces that meet this requirement are: an annulus (cambered web), a 
cylinder (web on a roller) and a torus (baggy web). 

In order to apply the principle of conservation of mass to a web handling problem, it 
is necessary to know the change in specific mass flow (kg/m2-s) at any location, as the 
web goes from the relaxed to the stressed state. That, in turn, requires understanding how 
three things change. These are: 1) the paths followed by web particles, 2) the cross 
sectional area through which the particles pass and 3) the density of the material. For a 
relaxed, uniform web, it is easy to calculate the mass flow. The paths may all be chosen 
to be parallel to one of the coordinate axes, such as x. The increment of cross sectional 
area will then be in the plane of the other two axes, y and z and the density can be 
determined in a static off-line measurement. After the web is deformed by stress, the 
situation is not so clear. The paths that were originally straight may become curved; the 
increments of cross sectional area become distorted and the density changes. Fortunately, 
it turns out that the solution to this problem fits hand-in-glove with nonlinear elasticity 
theory. 

 
 



 

 

 

 

 

 

 

 

 

 

Figure 1 – Mapping mass flow in the relaxed web to mass flow in a stressed web. 

The unique role of nonlinear elasticity theory in relating mass flows in the relaxed 
and stressed webs 

There are two types of nonlinear elasticity theory. One deals with nonlinear materials 
- those that exhibit either viscoelastic or plastic behavior. The other deals with nonlinear 
equations needed to characterize the geometric relations resulting from large 
deformations. It is geometric nonlinearity that will concern us here.  

Web processes typically operate with strains that are small and therefore permit the 
use of Hook’s law. However, small strains do not necessarily imply small deformations, 
particularly elastic rotations. An example would be a thin steel band that can be bent into 
a complete circle without exceeding the material’s yield point. In web handling, a good 
example is the misaligned roller in which the rotation (in radians) of the downstream end 
is of the same order of magnitude as the strain. In this case, the MD tension interacts with 
the rotation in a way that significantly alters the amount of lateral bending.  To account 
for these effects, nonlinear terms must be included in the equations of equilibrium1. 
There may be special cases where linear theory produces acceptable answers for large 
deformations, such as deflection of a cantilevered beam with no longitudinal stress. But, 
in general, linear theory is useless for web handling. 

When using nonlinear elasticity theory, new coordinate lines, which are generally 
curved as illustrated in Figure 1, may be calculated for the web in its stressed state. These 
contain the points which, before deformation, were located on lines parallel to the 
corresponding coordinate axes x, y and z. In the case of plane stress, z is assumed to be 
normal to the x-y plane. For a two-dimensional problem, you can imagine that if a 
rectangular grid is inscribed on the object in the relaxed state, it then becomes a 
curvilinear coordinate system for the object after it is deformed by stress. The subscripts
x , y and z  are used to indicate these curvilinear coordinates of the stressed web. The 
unit vectors representing the coordinate directions will be designated xi , yi   and zi . If the 
strains are small, this new coordinate system can be considered to be mutually orthogonal 

                                                           
1 Beam theory for a misaligned roller also includes the effect of MD tension. But, it 

avoids nonlinearity by assuming that it is constant. This constant value can be interpreted 
as the cross-web average value. This, as Shelton demonstrated, works quite well for 
purposes of predicting overall lateral displacement.    



and will generally be rotated relative to the x, y, and z axes by an amount that will vary 
depending on location. The orthogonality is not perfect. The angles between them will 
differ slightly from 90 degrees because of shear. However, the errors this discrepancy 
introduces into the calculation of stress and mass flow are on the order of one minus the 
cosine of the angle of shear and are thus second order effects. The strains in the directions 
of the deformed coordinate system will be represented as xxε

 

, yyε
 

 and zzε


. Nonlinear 
elasticity theory makes it possible to calculate these strains as well as their directions. 

If a solution process could be implemented using the deformed coordinates, the 
equations of equilibrium and strain equations would look exactly the same as in linear 
theory. However, this is not possible because the deformed coordinates are not known 
until the problem is solved. To get around this difficulty, all of the quantities that will 
appear in the solution must be expressed in terms of the original coordinates. For small 
strain theory, this is where the nonlinear terms come from. The small strain assumption is 
very important because large strain introduces nonlinearities that are an order of 
magnitude more difficult. Once the solution to the nonlinear equations is available, the 
orientation of the deformed coordinates (as a function location) can be calculated along 
with the values of stresses and strains that are aligned with them.  

One more feature must be added to this picture. The web moves. And, although it is 
assumed to be static for purposes of elastic analysis, the motion plays an important role in 
establishing boundary conditions. In the relaxed state, one of the coordinate axes, which 
is assumed to be x in this discussion, is assumed to be aligned with the direction of 
motion. This means that every particle in the relaxed web will follow paths that are 
parallel to the x-axis and in the stressed web these same particles will follow paths that 
coincide with curved coordinate lines that are aligned with the unit vector xi . 
Furthermore, as a consequence of the effective orthogonality of xi  , yi  and zi  , any 
increment of area that is normal to the particle path in the relaxed web can, after it is 
deformed, can be taken as normal to the path in the stressed web and therefore in the 
same plane as yi   and zi  at that point. 

We now have everything necessary to relate mass flow in the relaxed web to that in 
the stressed web. 

Assume that the relaxed web is perfectly straight, is moving with velocity Vr , has a 
thickness h  that does not vary with x  and that it has a uniform density ρr . 

Calculating the mass flows 
Now, referring to Figure 1, consider a small cross sectional area of the web in its 

relaxed state, normal to the direction of motion, with width dy and height h. The specific 
mass flow through this area will be. 
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Before proceeding further, an important fact about mass flow in process lines should 

be noted. When a process line reaches a steady state of tension and motion, the law of 
conservation of mass requires that the mass flow per unit area along any given particle 
path be constant. Unless that were true, the mass in spans would be growing or 



diminishing. That would alter tension or velocity and thus contradict the assumption of 
steady state2. 

Now, we will assume that the relaxed web, described earlier, is exposed to the 
stresses of a process line. Depending on the condition of things such as rollers and nips, 
its lateral shape is changed. But in the steady state, presuming that the web remains in 
tension all along its length3, the elastic analysis presumes that this piece of web does not 
change in mass in going from the relaxed to the stressed state. So, it is logically 
consistent to assume that the specific mass flow rate at any point remains at the same 
value it had at the corresponding point in the relaxed web. This assumption does not limit 
the generality of the model. Once the overall scheme is made clear, it will be obvious 
how adjustments in the total mass flow rate affect results.  

Thus, for the stressed web, the requirement that the specific mass flow rate at any 
point match the value at the corresponding location in the relaxed web means that the 
same mass per unit time must be passing through the deformed cross sectional area dydz  . 
And since, 
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There is one more point to be considered. Since most web materials have a Poisson 

ratio of less than 0.5, their density changes with stress. If density of the stressed web is 
represented by ρs , then, 
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Substituting (5) in (4) yields, 
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Finally, equating the mass flows in (2) and (6) , 
 
                                                           
2 There is always a single location where the line speed serves as a reference for all 

other points in the process. This is known as the master speed reference. When speed is 
changed at this point, the operator is actually setting the mass flow reference. By forcing 
each tension zone to adjust its speed in proportion to this signal, the tension control 
system keeps the total mass flow rate in each zone matched to the total mass flow rate at 
the reference location and this, in turn, minimizes tension disturbances. 

3 Since webs usually can’t support compressive stress, there could be localized areas 
of MD slackness where part of the web buckles out of plane to accommodate the mass 
flow. These situations don’t alter the argument, provided they aren’t growing or 
shrinking. 
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Thus, at any point on a web that is uniform along its length and in a steady state of 

motion, the velocity in the relaxed web Vr , is equal to the velocity in the stressed web Vs  
divided by ( )1 xxε+

 

, the strain xxε
 

 being measured in the same direction as the velocity. 
In the rest of this discussion I will refer to this as the Velocity-Strain equation. 

It is obvious that if (7) applies point-wise across the web, the cross-web average 
values of the variables will have the same relationship. 
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Another important point to note is that there is nothing in the derivation of equation 

(7) that excludes the possibility of lateral variations in density or thickness of the web. 
Although, it is possible that large variations in thickness may need to be treated like 
variation in roller diameter. 

On casual examination, equation (7) seems trivial. However, its power lies in 1) its 
ability to incorporate the cross web variation in Vs, imposed by rollers and nips into the 
elastic analysis – as, for example, in the case of a concave roller and 2) its ability to also 
account for the behavior of webs that are not straight or flat in their relaxed state where 
Vr will vary with lateral position. The implications of these facts will be explored later.  

In most problems, the average values xxavgε
 

and Vsavg are used to calculate an average 
value for Vr. Then, the functional dependence of Vs and/or Vr on lateral position is used 
to calculate corresponding values of xxε

 

 that, when averaged will match xxavgε
 

. This will 
be illustrated later. 

It should also be apparent that the ratio of Vr to Vs at a particular cross web position 
won’t change with line speed alone. It only changes with tension. 

 

 

 

 

 

 
 

Figure 2 - Geometric relationships in the Velocity-Strain equation 
 



The annotated photo in Figure 3 shows a latex4 web in a steady state condition at a 
misaligned roller. Strains and displacements have been made unrealistically large so that 
their effects are visible. Since the small strain assumption has been violated, this is only a 
qualitative demonstration. Even so, the essential features of the Velocity-Strain equation 
can be seen. The black lines were applied to the relaxed web before taking the photo. It 
was a uniform square grid. The white, semitransparent bands, arrows and other 
annotations were added with Photoshop. Comparing the relative lengths of the white 
bands, it is clear that the lower edge of the web is longer than the top, indicating that it is 
stretched more. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Qualitative Demonstration of the Velocity-Strain equation. 
 
At the downstream end, the web must match the circumferential velocity of the roller 

and is therefore moving at constant speed at every point across its width. There is no 
evidence of distortion there. All of the lateral bending is occurring in the vicinity of the 
upstream roller, causing higher MD stress at the bottom edge than at the top. The stress 
variation from edge to edge is evident in the spacing of the vertical grid lines. They are 
farther apart at the bottom than the top. So, it is clear that in the vicinity of the upstream 
roller, the web is moving faster at the bottom edge than at the top, in accordance with the 
Velocity-Strain equation.  

The normal strain rule 
The Normal Strain rule in the 2005 paper is a special case of the Velocity-Strain 

equation. Along any particular particle path, Vr  is constant. So, equation (7) can be 
applied once at the entry to a roller where the velocity is Vd and strain is εd and then again 
on the same particle path at the entry to the upstream roller where the velocity is Vu and 

                                                           
4 Latex has two advantages for demonstrations. It can tolerate very large strains. And 

it has a Poisson ratio close to 0.5, so that density changes due to strain are eliminated 
from consideration. 



the strain is εu. And because of the normal entry rule, both the strains and the velocities 
are in the direction of the x -coordinate. Then, since Vr is the same in both cases, 
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Before proceeding to a discussion of non-uniform webs, the nonlinear equations of 

elasticity will be summarized. 

THE NONLINEAR EQUATIONS OF ELASTICITY 

In 1948 V. V. Novozhilov published a wonderful monograph [5] on nonlinear 
elasticity.  In it, he derives the nonlinear elasticity equations without the use of tensors 
and shows how they may be simplified for specific kinds of problems. Although, his 
motivation seems to have been mainly pedagogical, his results provide starting points for 
two computationally efficient models that are ideally suited for web handling. The first 
version is suitable for problems involving the kinds of large out-of-plane rotations that 
can occur in webs that are twisted, baggy or passing over curved bars. The second, 
simpler version is for problems where the elastic rotations are of the same order as the 
strains. This is typically useful for web handling problems that do not involve out-of-
plane motion, or for which out-of-plane rotations are very small. 

The first step in getting to the desired equations is to summarize two versions of 
geometrically nonlinear equations of equilibrium in three dimensions, as presented by 
Novozhilov. These are the equations for, 

• Small strains and large rotations. 
• Small strains and small rotations. 

In the following discussion, these are modified to model non-planar membranes in a 
two-dimensional frame of reference.  

The variables u, v and w represent the displacements due to strain, referred to the 
coordinates x, y and z. As indicated earlier, the subscripts x , y and z  indicate the 
corresponding curvilinear coordinates in the stressed web. The symbols σ and ε will 
represent stress and strain. Subscripts will indicate the coordinates to which they are 
referred. 

For purposes that will become apparent later on (curvilinear coordinates), it is useful 
to adopt the following notation. 
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The parameters ω in (12) are involved in characterizing the rotation of an arbitrary 

infinitesimal element. When they are zero, the average rotation is zero. 



The equilibrium equations for small strains and large rotations  
The first of three scalar equilibrium equations for small strains and large rotations, 

taken directly from Novozhilov, is shown below.  
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(13) 

 

 
The equations for the y and z directions can be written out by permuting the 

subscripts.  
As in linear theory, ij jiσ σ= .  
In the language of continuum mechanics, the sums of terms inside the brackets 

represent the 1st Piola-Kirchoff stresses. The quantities σ with tildes over the subscripts 
are Cauchy stresses – the true stresses that are aligned with the deformed coordinates in 
the stressed web. 

Modifications for representing a membrane in a 2D frame of reference 
The 3D equilibrium equations, when applied to thin webs, present many challenges 

for FEA solvers.  Many of them can be avoided by using a technique very similar to that 
used by the early pioneers of structural analysis to model the combined effects of surface 
loading, bending moments and in-plane stresses on thin plates. This is a 2D model, with 
no z-axis terms other than out-of-plane displacement [6].  

A straightforward approach to deriving such a model is to start with the 3D equations 
and eliminate all of the derivatives, stresses and shears involving the z-axis. Doing this 
removes the effects of bending stiffness. But, this has negligible effect on accuracy for a 
wide class of problems in which the web is treated as a perfectly flexible membrane. 
Only the variable w, representing the out-of plane displacement is retained. In this way, a 
2D coordinate system can be used to define the relaxed web. But, information on the w 
displacement is retained. The equilibrium equations then become, 
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This will be called the 2D + w membrane model. So long as the web is very thin and 
flexible, these equations are valid for large out-of-plane displacements. The main 
limitation is solution stability. Compressive stresses cause the model to have multiple 
solutions. Essentially, wrinkles try to form. And without bending stiffness, the solution 
oscillates between many possible shapes. This can be controlled to some extent by 
adjusting the cell size of the FEA mesh or by imposing special constraints on w. 

It’s instructive to expand the derivatives in equation (16) and examine the individual 
terms. 
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The terms in the first set of brackets in (17) are exactly those derived by von Karman 

as part of his large-deflection plate analysis. They represent the out-of-plane stresses due 
to the interaction of in-plane stresses with surface curvature. The terms in the second set 
of brackets are the contributions to out-of-plane stresses due to interaction of spatial rate 
of change of the in-plane stresses with the slope of the web surface. In plate analysis, the 
second set of terms is not significant because the out of plane forces due to slopes are 
small compared to the effects of curvature plus bending moments. In the case of webs, 
however, the slopes can be large - for example as in the case of a twisted or baggy web. 

For problems with no out-of-plane displacements (plane stress), only the first two 
equations are needed (w = 0). Even with compressive stress, these models tend to be 
well-behaved and converge very quickly. 

Strain definitions for small strain and large rotations  
Since they are interpreted as strains in the plane of a membrane, only three strains 

are required. These are known in continuum mechanics as Green-Lagrange strains. 
 

Strain along  xi                      
2 2 21

2xx
u u v w
x x x x

ε
 ∂ ∂ ∂ ∂     = + + +      ∂ ∂ ∂ ∂       

 

       
(18) 

Strain along  yi                      
  

2 2 2
1
2yy

v v u w
y y y y

ε
      ∂ ∂ ∂ ∂
 = + + +     ∂ ∂ ∂ ∂       

 

        
(19) 

Shear strain in plane xi - yi       xy
u v u u v v w w
y x x y x y x y

ε ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

        
(20) 

 
Equations (18) through (20) look horribly complicated. But, a good FEA solver can 

easily accommodate them and their physical interpretation is quite simple. They are the 
strains that are tangent to the surface of the membrane and aligned with the deformed 
coordinates x and y . 

For problems of plane stress, the terms involving w are dropped. 
It may be helpful to some to see how these equations work in a simple case. Suppose 

a 0.61 by 0.61 m (24 by 24 inch) sheet, 0.0254 mm (.001 inch) thick with a modulus of 
689.5 MPa (100 kpsi) is oriented in the x-y plane and stretched in the y-direction with a 



uniform tension of 1000 psi. Then, the sheet is subjected to an out-of-plane, rigid-body 
rotation of 30 degrees, while maintaining the tension. The axis of rotation is parallel to 
the x-axis and midway down the sheet. The following table shows calculated values in 
the center of the sheet for the partial derivatives applicable to equation (19) for the two 
cases. 

 

    

v
y
∂
∂    

u
y
∂
∂    

w
y

∂
∂  

Sheet horizontal 0.0099505 0 0 
Sheet rotated 30 deg -0.125375 0 0.505007 

 

Sheet horizontal          ( )210.0099505 0.0099505 0 0 0.0100
2yyε  = + + + =  

   

Sheet rotated 30 deg   ( ) ( )2 210.125375 0.125375 0 0.505007 0.0100
2yyε  = − + − + + =  

 

Small strains and small rotations  
When rotations are small and of the same order of magnitude as the strains, the 

equations of equilibrium and strain can be simplified. 
The equations of equilibrium become, 
 

                   0xx z xy xy z yyx y
σ ω σ σ ω σ∂ ∂   − + − =   ∂ ∂     

 (21) 

                    0xy z xx yy z xyx y
σ ω σ σ ω σ∂ ∂   + + + =   ∂ ∂     

 (22) 

              0xx xy xy yy
w w w w

x x y y x y
σ σ σ σ

   ∂ ∂ ∂ ∂ ∂ ∂
+ + + =   ∂ ∂ ∂ ∂ ∂ ∂   

     

 (23) 

 
The equations of strain become, 

                          ( )
2

21 1
2 2xx z

u w
x x

ε ω
 ∂ ∂ ≈ + +  ∂ ∂   

 

 (24) 

                          ( )
2

21 1
2 2yy z

v w
y y

ε ω
  ∂ ∂
 ≈ + + ∂ ∂   

 

 (25) 

                           xy
v u w w
x y y x

ε ∂ ∂ ∂ ∂
≈ + +
∂ ∂ ∂ ∂

 (26) 

 
As in the case of large rotations, plane stress problems require only equations (21) 

and (22). And in the strain equations, all of the terms involving w are dropped. 



Stress definitions 
The stresses, xxσ

 

 , yyσ
 

 and xyσ
  for both the large and small rotation models are 

simply Hook’s law for plane stress, except they are interpreted as being in the plane of 
the membrane and aligned with the deformed coordinates x and y . 

 

 Stress along  xi                        ( )21xx xx yy
Eσ ε µε
µ

= +
−

     

          (27) 

Stress along  yi                                        ( )21yy yy xx
Eσ ε µε
µ

= +
−

     

        (28) 

Shear stress in plane xi - yi             ( ) ( )2 1xy xy
Eσ ε
µ

=
+ 

        (29) 

Relationship of the deformed coordinates x , y  and z  to those of the relaxed web 
Direction cosines of the unit vectors xi , yi   and zi  , of the deformed coordinates x , 

y and z in relation to the coordinates of the relaxed web are shown in Table 1. 
The values of Ex, Ey and Ez in the table entries are, 
 

  1 2 1 , 1 2 1 , 1 2 1x xx y yy z zzE E Eε ε ε= + − = + − = + −  (30) 
 

       xi       yi        zi  
 
x 

     
1
1

xx

x

e
E

+
+

 

1
2

1

xy z

y

e

E

ω − 
 

+
 

1
2

1

xz y

z

e

E

ω + 
 

+
 

 
y 

1
2

1

xy z

x

e

E

ω + 
 

+
 

     
1
1

yy

y

e
E

+

+
 

1
2

1

yz x

z

e

E

ω − 
 

+
 

 
z 

1
2

1

xz y

x

e

E

ω − 
 

+
 

1
2

1

yz x

y

e

E

ω + 
 

+
 

     
1
1

zz

z

e
E

+
+

 

 
Table 1- Direction cosines of the deformed coordinates 

Normal entry angle 
Application of the normal entry rule requires knowing the angle ψ between the paths 

of the particles in the stressed web and the x coordinate, in other words, the angle 
between the x and x  coordinates.  The values in Table 1 can be used to express the unit 
vector xi in terms of the unit vectors i and j of the x and y coordinates as, 

 

                               

1
1 2
1 1

xy z
xx

x
x x

ee
i i j

E E

ω++
= +

+ +

 (31) 



   
And the tangent of the angle ψ is, 
 

                             ( )
1
2tan

1 1

xy z

xx xx

ve
x

e e

ω
ψ

∂
+

∂= =
+ +

 (32) 

 
The same relationship was derived by different means in the 2005 paper [1]. 

BAGGY WEB 

An initial objective for this paper was to describe a conceptual framework for 
“thinking” about baggy webs. Writing about the subject stimulated new ideas that led to a 
complete working model. The key to the model is to define an appropriate natural shape 
for the relaxed web that makes the span geometry independent of time. A torus is a good 
candidate. 

Virtues of a torus 
A baggy web is, by definition, not flat in its relaxed state. The most common forms 

of bagginess consist of MD lanes that have become elongated during processing. There 
are many ways this can happen. A common cause is the formation of circumferential 
ridges in wound rolls due to non-uniformity in the sheet thickness profile (gauge bands). 
Another source might be an imperfect nip drive that produces a non-uniform MD velocity 
profile. If one thinks about these causes, it seems reasonable to postulate that the natural, 
relaxed shape of such webs - one that would leave them free of wrinkles or stress - would 
generally be toroidal in nature. 

Furthermore, a torus meets the requirement for the Velocity-Strain equation that it be 
a surface of revolution with orthogonal curvilinear coordinates, and that one of the 
coordinates be aligned with the paths taken by points on the surface as it revolves about 
the axis of revolution. 

The defining equations for a torus are: 
 
  ( ) ( )cos( ) cos( ), cos( ) sin( ), sin( )z R R x R R y Rα β α β ββ α β α β= + = + =

      
(33) 

 
An idealized example is shown in Figure 5 – exaggerated for sake of illustration. It 

might have resulted from a barrel-shaped wound roll. So, it is shorter at the edges than 
the center and is assumed to be moving in the +α direction by rotating about the y-axis.  

A torus is a particularly useful shape because it has all three of the basic types of 
curved surfaces [7] . Surfaces are classified on the basis of curvatures of the principal 
curves passing through a given point. If, for a given point on the surface, the centers of 
curvature of both these curves are on the same side of the surface, it said to be elliptic 
there. If they are on opposite sides that, spot is called hyperbolic and if one of them is 
zero, it is parabolic. In the case of a torus, the principal curves are the lines traced by the 
point of the arrow labeled Rb in Figure 5 by holding β constant and varying α and then by 
holding α constant and varying β. At any point on the torus of Figure 5 for which -π/2 < β 
< π/2 the surface is elliptic. At any point on a line defined by β = ±π/2, the surface is 
parabolic. And at any point for which π/2 < β < -π/2 the surface is hyperbolic.  

 
 



 
 
 
 
 
 
 
 

                        Elliptic surface      Hyperbolic surface 
Figure 4 – Two fundamentally different curvatures for baggy webs 

All points on the surface in Figure 5 are elliptic. As a consequence, both edges are 
shorter than the centerline. A web that has edges longer than the centerline can be 
modeled by selecting a hyperbolic segment from the inside surface of the torus. For a 
laterally-symmetric web, this is conveniently done by reversing the sign of Rβ  in the 
defining equations (33). A web that combines camber and bagginess (hyperbolic on one 
half and elliptic on the other) could be modeled by locating the centerline where β = ±π/2. 
Only symmetrically-elliptic and symmetrically-hyperbolic cases will be analyzed here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 - A Section of a Torus 
 

There are other geometries that might be possible by modifying a toroidal segment. 
Corrugations could be created by making Rβ a sinusoidal function of β. Another 
possibility is a combination of a cylindrical surface (a torus with Rβ  = ∞) and a Gaussian 
function to simulate a single baggy lane.  



Velocity-Strain equation for a torus 
The normal strain boundary condition can be immediately calculated from a 

consideration of the geometry of the torus illustrated in Figure 5. 
If Vo is the tangential velocity in the α-direction when β is zero, then the velocity Vr , 

as the surface rotates about the y axis, will be, 
 

                              
cos( )

r o
R R

V V
R R

α β

α β

β+
=

+
 (34) 

 
Substituting (34) into the Velocity-Strain equation to find the normal strain at the 
downstream roller, 
 

                          
( )

( )
1

cos( )
s

bndry
o

R RV
V R R

α β
αα

α β

ε
β

+
= −

+
 

 (35) 

where it is assumed that the downstream roller has a surface velocity of Vs and the web 
has been pulled flat onto it with good traction. An important condition occurs when Vs/Vo 
= 1. Then, the strain will be zero at the center of the web.  

If a target value for the average strain is specified, the following procedure can be 
used to find xxε

 

. First, expression (35) is integrated to find xxavgε
 

. 
 

   

1 1
2 2

1 max4 tan tan 1
4

s
avg

o

R R R RV
V R R R R

α β α β
αα

α β α β

β
ε

−

−

 
   − −  = −        + +     

 

 

 (36) 

 
This expression is then solved for the value of Vs/Vo which is used in expression (35) 

to calculate the normal strain profile. Note: (36) is valid only if R Rα β> . 

Curvilinear coordinates 
In order to apply the 2D + w membrane model to something like Figure 5, a 

mathematical transformation is needed that will “flatten” it for purposes of calculation 
and then permit “unflattening” the results. This is provided by curvilinear coordinates. If 
such a system is fitted to the surface of the torus, it is possible to transform the problem 
so that, for purposes of FEA analysis, the relaxed shape can be treated as though there is 
no z-axis and the boundaries will form a rectangle in the x-y plane.  For a torus, such a 
system can be created by choosing α and β as the new coordinates. Rβ would be the third 
coordinate in a full 3D model. Since these define the lines of principal curvature for a 
torus, orthogonality of the coordinates is assured. If a displacement variable w is defined 
in this context, it is interpreted as the distance along a normal to the surface (in the 
direction of Rβ for the relaxed web). The surface itself is at w = 0. The displacements in 
the α and β directions will be u and v, respectively (in units of distance, not angle). 

The 2D + w membrane model with curvilinear coordinates is closely related to the 
membrane theory of shells [8], except that it can accommodate large displacements and 
rotations. The method for transformation to curvilinear coordinates is covered in 
numerous texts. The following results for nonlinear elasticity are based on a method 
outlined by Novozhilov [5]. 



The 2D + w model in toroidal coordinates 
The Lamé coefficients for a torus are: 
 

             cos( ), , 1RH R R H R Hα α β β ββ= + = =  (37) 
 
The parameters corresponding to exx, eyy, exy, exz, eyz ωx, ωy and ωz are: 
 

                       

1 sin( ) cos( )ue v w
Hαα

α
β β

α
∂ = − + ∂   

(38) 

                       

1 ve w
Hββ

β β
 ∂

= + ∂ 
 (39) 

                       1 1sin( )v ue u
H Hαβ

α β
β

α β
∂ ∂ = + + ∂ ∂   

(40) 

                       

1 cos( )R
we u

Hα
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β
α
∂ = − ∂ 

 (41) 

                       

1
R

we v
Hβ

β β
 ∂

= − ∂ 
 (42) 

                       1
2

w v
Hα

β
ω

β
 ∂

= − ∂ 
 (43) 

                       1 cos( )
2

w u
Hβ

α
ω β

α
∂ = − + ∂ 

 (44) 

                       1 1 1sin( )
2R

v uu
H Hα β

ω β
α β

 ∂ ∂ = + −  ∂ ∂   
 (45) 

 
The strains corresponding to xxε

 

, yyε
 

and xyε


are: 
 

          
2 2

21 1 1
2 2 2R Re e e eαα αα αα αβ α βε ω ω
    = + + + + −    

     
 

 (46) 

          
2 2

21 1 1
2 2 2R Re e e eββ ββ αβ β αββε ω ω
    = + + − + +    

     
 

 (47) 

 1 1 1 1
2 2 2 2R R R Re e e e e e eαβ αα αβ ββ αβ α β β ααβε ω ω ω ω      = + − + + + − +      

      




     (48) 

 
The equations of equilibrium for the α , β, and R directions are, in respective order: 
 

( ) ( )  

1 sin( ) cos( ) 0RH a a H a a a a a a
H H H Hβ α α α β α α β α

α β α α

β β
α β

    ∂ ∂
+ − + =    ∂ ∂     

  (49) 



 ( ) ( )  

1 1 sin( ) 0R aH a a H a a a a a a
H H H Hβ α β α β β β α

α β β α

β
α β

 ∂ ∂
+ + + = ∂ ∂ 

  (50) 

( ) ( )  

sin( )1 1 0R R
H

H a a H a a a a a a
H H H H

β
β α α β α α β β

α β α β

β
α β

 ∂ ∂
+ + − = ∂ ∂ 

     (51) 

 
The quantitiesa aα α , a aα β , Ra aα , a aβ α , a aβ β and Ra aβ are: 
 

          ( ) 11
2 Ra a e eα α αα αα αβ αβσ ω σ = + + − 

 


 



 (52) 

          ( )1 1
2 Ra a e eα β αβ αα ββ αβω σ σ = + + + 

 


 



 (53) 

          1 1
2 2R R Ra a e eα α β αα β α αβω σ ω σ   = − + +   

   


 



 (54) 

          ( ) 11
2 Ra a e eβ α αα αββα ββσ ω σ = + + − 

 
  



 (55) 

          ( )1 1
2 Ra a e eβ β αβ βββα ββω σ σ = + + + 

 
  



 (56) 

          1 1
2 2R R Ra a e eβ α β β αβα ββω σ ω σ   = − + +   

   
  



 (57) 

 
The stresses are: 
 

                      ( )21
E

αα αα ββσ ε µε
µ

= +
−

 
   

 (58) 

                       ( )21
E

ααββ ββσ ε µε
µ

= +
−

   
 

 (59) 

                       
( ) ( )2 1

E
αβ αβσ ε

µ
=

+ 

 

 (60) 

 
And ij jiσ σ= . 

The normal entry condition: 
The angle between of the particle paths and the α coordinate is calculated in the same 

way as (32), but the curvilinear coordinate values are used. 
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 (61) 

 
 
 



Let 
 

                         ( )2 tan( ) 1 2bndry Re eαβ ααψ ω= + −                                (62) 
 
Then, the normal entry boundary condition becomes, 
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

               
 (63) 

 
All the rollers in this case are assumed to be aligned, and the relaxed web isn’t bent 

laterally. So, Ψ = 0. 

Summary of boundary conditions 
At the downstream roller, expressions (35) and (63) are used in (58) through (60) to 

create load-type boundary conditions for u and v. The value of w is set by the expression 
for wflat, described in equation (65) below. 

At the upstream roller, the value of u is set to zero. A load-type boundary condition 
is used for v. It is set to zero so that the web is free in the y-direction. The value of w is 
set to wflat. 

The edges are free. So, the values of load-type boundary conditions are set to zero 
for all three variables. 

Since load-type conditions for v are used at both ends and on the edges, something 
must be done to avoid rigid body motion in the y-direction. The web has axial symmetry 
in the stressed state, so it is possible to constrain it by setting the integral of v on the 
perimeter to zero (a feature of any good solver). 

Nonlinear behavior 
Nonlinear PDEs often behave badly in numerical analysis because they can have 

multiple solutions. In spite of this, the nonlinear equations of elasticity perform 
surprisingly well when applied to 2D problems like the misaligned roller. Apparently, the 
physics of the problem insure that there is a unique solution. The 2D + w equations, 
especially when combined with curvilinear coordinates, are not so fortunate. When the 
variable w is introduced, Pandora’s Box is opened. This is especially true when the 
desired solution involves compressive stresses. It then becomes possible for the web to 
wrinkle and this can happen in many different ways, especially for a membrane with no 
bending stiffness. But, even when compressive stress isn’t present, the nonlinearities may 
cause instability. So, strategies must be found to help the solver. Sometimes, it may be 
possible to get acceptable results just by using a mesh that is too coarse for wrinkles to 
form. But, for problems like the baggy web, this won’t do. Physical intuition is the best 
guide. 

Forcing the stressed web to be flat 
One of the things we know in advance about the solution is that the MD tension is 

pulling the web towards flatness. A real web may not actually become flat. But, much can 
still be learned from a model that forces flatness. If there are compressive stresses in a 
flattened model, we know that wrinkles could have formed. In the model just described, 
there is a way to constrain the solution in this way. 



The plane of the stressed web is defined by setting the value of the z coordinate to a 
constant. This definition won’t involve explicit use of the z coordinate, so it won’t upset 
the 2D + w model. 

 
( )max maxcos( ) cos( )oz R Rα β β α= +                        (64) 

 
The values αmax and βmax are the maximum values of α and β. This positions the plane 

so that it just touches the four corners of the web. 
To convert this to a form that can be used in the curvilinear coordinate system, it is 

necessary to find the values of w (it will be called wflat) that will bring every point of the 
relaxed web to the plane defined by (64). The variable w is measured in the direction of 
Rβ. So, applying a little trigonometry yields, 

 
1 ( cos( ))

cos( ) cos( )
o

flat
z

w R Rα β β
β α

 
= − + 

 
                         (65) 

  
Now, this is used in a term that is added to the right hand side of the z-direction 

equilibrium equation (51) to force the variable w toward wflat. It is, 
 

6( )10flatw w−                                             (66) 
 
The 106 factor is an arbitrary, large value that is established by trial and error. 

Numerical analysts might call this a penalty function and argue that the difference 
between w and wflat must become very small in order to simultaneously satisfy the left 
hand side of the equation. A better way of thinking about it is to imagine the factor 106 as 
being a uniformly distributed pressure that is forcing the web against a rigid, frictionless 
surface. 

Results 
This is a very new model and there is no experimental data with which to test it. So, 

the following results should be viewed as tentative. The web parameters are: 
 

Span length (chord) = 40 inches (1.016 m) 
Width (chord) = 20 inches (0.508 m) 
Thickness = 0.001 inch (0.025 mm) 
Poisson ratio = 0.3 
E = 500,000 psi (3.447 Gigapascals) 
MD tension = 1000 psi (6.895 Megapascals)  
Poloidal angle = ± 2 deg (0.035 radian) 
Toroidal angle = ±2 deg (0.035 radian) 
 
Elliptic curvature: 
Rα = 572.7 inches (14.55 m) 
Rβ = 286.54 inches (7.28 m) 
Difference in MD arc length at center compared to edge = + 0.02% 
 
Hyperbolic curvature: 
Rα = 572.7 inches (14.55 m) 



Rβ = -286.54 inches (7.28 m) 
Difference in MD arc length at center compared to edge = - 0.06  

Results for elliptic baggy webs (edges shorter than center) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – MD stress, elliptic web 
Axes in radians, stress in psi 

     Figure 7 - CD stress, elliptic web 
Axes in radians, stress in psi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-Shear stress, elliptic web 
Axes in radians, stress in psi 

Figure 9 – Principal minimum stress 
at downstream roller in psi    

 
The elliptically curved web shows positive lateral stress at the downstream roller. So, 

it is self-spreading and behaving as though it is on a concave roller. This makes sense, 
because a concave spreader roller causes the MD stress to be higher at the edges than at 
the center. Note also that there is the same kind of shear profile as in a concave roller. 
The waviness in the contours of Figure 6 is due to the FEA mesh. 

 
 
 



Results for hyperbolic web (edges longer than center) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 – MD stress 
   Axes in radians, stress in psi 

Figure 11 – CD stress 
   Axes in radians, stress in psi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 – Shear stress 
    Axes in radians, stress in psi 

Figure 13 – Principal minimum stress 
   at downstream roller in psi 

 
The behavior of the hyperbolic web is the inverse of the elliptic web. Tension at the 

edges is lower than the center and it shows negative lateral stress at the downstream 
roller. It will tend to wrinkle as though it were on a convex roller.  

Model consistency tests 
A convenient test of the model is to run it as though the web is being pulled over a 

frictionless mandrel shaped like the relaxed web. Under these conditions, the intuitive 
expectation is that the web should show very little variation in the α-direction stress with 
perhaps a small amount of β-direction stress to account for the interaction of α-direction 
stress with the lateral curvature. This is done by eliminating w as a variable and deleting 
the z-direction equilibrium equation. Then, αασ

 

is set to 1000 psi in a load boundary 



condition at the downstream end. The web is fixed in the α-direction at the upstream end 
and is left free in the β-direction at both ends. The edges are left free. To eliminate rigid 
body motion, the integral of v on the perimeter is set to zero. Intuitively, one would 
expect that under these conditions, the web would show almost no variation in MD stress 
and there should be a small amount of CD stress due to the cross-web curvature. That is 
what happens. The variation in MD stress over the entire web is less than 0.1 psi from the 
1000 psi load and the CD stress varies from a maximum of +0.22 psi at the centerline to 0 
at the edges. 

Another test is to move the wflat plane to a different value of zo. If the model is 
working correctly, the results shouldn’t change.  In the elliptic model, it was moved from 
the concave side, where it was touching the corners, to a position where it was tangent to 
the convex surface. There was no change in the results. 

CONCLUSIONS 

The following are tentative conclusions, based on looking at a few examples of 
elliptic and hyperbolic models. 

1. An elliptic (short on the edges) baggy web will not wrinkle at a downstream 
roller. It will develop lateral tensile stress like a uniform web on a concave roller. 
If the bagginess is observable, it is possible that the lateral tensile stress will be 
large enough to cause slipping and scratching. 

2. A hyperbolic (long on the edges) baggy web may wrinkle at a downstream roller. 
It will develop lateral compressive stress like a uniform web on a crowned roller. 
If the bagginess is large enough to be observable, it is likely that the compressive 
stress will be so high that it will be difficult to prevent wrinkling. 

3. The behavior of elliptic and hyperbolic webs will not change with the direction of 
wrap. 

4. Increasing tension to pull out the slack may eliminate gross problems, but it 
won’t change the tendency to spread or wrinkle. 

5. A web that has narrow baggy lanes due to deep corrugations in a wound roll will 
likely have spreading where the peaks were and wrinkling at the valleys. 
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