
 
 

THE ELUSIVE ENTRY ANGLE 

Where does the entry angle come from? This paper will show that the answer to this question 
reveals a connection between longitudinal and lateral behavior that has gone largely unnoticed. 

In beam models, entry angle refers to the angle between the tangent to the web centerline and 
the normal to the roller axis at the line of entry onto the roller. Whenever the entry angle becomes 
non-zero, a web that is moving longitudinally through a process will also move laterally on the 
roller in a direction that returns the entry angle to zero. If the web is modeled as a perfectly 
flexible string, this behavior is intuitively obvious because it bends sharply on entering a roller 
that is pivoted or shifted laterally. However, in the case of the most commonly used Euler-
Bernoulli (E-B) beam model, the web can’t make a sharp bend. If it is initially perpendicular to the 
roller axis, beam theory says that, provided there is no slipping, it should remain perpendicular as 
the roller is shifted or pivoted and thus wouldn’t move. We know from experience, however, that a 
real moving web begins to move laterally soon after a roller pivots or shifts? So, how can this be?  

NOMENCLATURE 

A cross sectional area of web 
E elastic modulus 
G shear modulus 
h thickness of web 
I area moment of inertia 
L span length 
m mass per unit length 
n Shear factor for Timoshenko beam 
s Laplace variable 
t time 
T tension in units of force 
Vo   web velocity in machine direction 
x distance along length of web 
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y lateral displacement of web 
y0 lateral web displacement at upstream roller, relative to ground 
yL lateral web displacement at downstream roller, relative to ground 
z lateral displacement of roller relative to ground 
θL angle between web plane and plane of roller motion at entry to roller 
θ0 angle between web plane and plane of roller motion at exit of roller 
θr angle of roller axis 
β boundary defect angle 
ρ density 
ϕ rotation of cross section (bending angle) 
ψ shear angle 
0 subscript indicating value of variable at x = 0 
L subscript indicating value of variable at x = L 
 

The normal entry equation 
The entry angle enters into lateral dynamic analysis through equation (1)1. It is commonly 

referred to as the normal entry equation. Other less-used names are the roller climbing equation, 
steering equation, parallel entry equation and velocity equation. It defines the lateral velocity of 
the web dyL/dt at the line of first contact with a roller2. The entry angle is the quantity inside the 
parenthesis on the right side of equation (1). It is the difference between the roller angle, θr and the 
web slope dyL/d x. The circumferential surface speed of the roller is V. The lateral position of the 
web relative to the roller is yL and z is the roller position relative to ground.  

 L L
r

dy dy dzV
dt dx dt

θ = − + 
 

  (1) 

The subscripts L and 0 on variables denote their value at the line of entry (x = L) and at the 
exit of the upstream roller (x = 0), respectively. 

 
 
 

 

 
 
 
 
 
 
 
 

Figure 1 
Illustration of normal entry and curvature transport in Shelton’s dissertation 

 
1 Valid only at the line of entering contact provided there is enough traction for the web to 

adhere to the roller surface without slipping at that location. 
2 To be strictly accurate, dyL/dt is the lateral velocity of the intersection of streamlines of web 

particles and the line of entering contact. 



 
 

Slope 
Slope is calculated from a static analysis of web shape [1]3. Equation (2) shows the equation 

for lateral position y(x) that results when face angles4 φL, φ0 and lateral displacements, yL, y0 are 
chosen as boundary conditions. The shape factors, g4, g5 and g6 depend on span dimensions, 
mechanical parameters of the web and distance along the span. 

It is tempting to think that face angles have been chosen as boundary conditions because they 
match the roller angles. The main point of this paper hinges on the fact that this is not the case, but 
for the moment, we have no reason to assume otherwise and it is instructive to see where this 
assumption leads.  

 ( ) ( ) ( ) ( )( ) , , , , , ,0 0 4 5 0 6y x y y y g x K L g x K L g x K LL Lφ φ= + − + +   (2) 

 From this, expressions for slope and curvature are developed. The equation for slope at the 
entry to a downstream roller (x = L) is, 

 ( )
( , )1 ( , ) ( , )0 2 0 3

h K LdyL y y h K L h K LL Ldx L
φ φ= − + +   (3) 

The factors, h1, h2 and h3 depend on span dimensions and mechanical parameters of the web 
and whether shear is included. 

The face angle φL in (3) is set equal to the roller angle θr. Making this change and substituting 
(3) into the normal entry equation, the following relationship is obtained. 

 ( ) 1
0 2 0 3

( , ) ( , ) ( , )L L
o r L r

dy h K L dzV y y h K L h K L
dt L dt

θ θ φ = − − − − +  
  (4) 

For an Euler-Bernoulli (E-B) beam, h1 and h3 are zero and h2 is unity at x = L.  So, if a web 
is initially in a state of uniaxial tension and the downstream end is suddenly pivoted (without 
lateral shifting) through an angle θr, equation (4) becomes, 

 0Ldy
dt

=   (5) 

Thus, if the web is initially perpendicular to the roller axis, it will never move laterally on the 
roller. If there is nothing wrong with the shape analysis (and that’s been around for a while now), 
there is no obvious reason to think that this naïve solution wouldn’t be correct.  

Even though something is clearly missing, it is interesting to see what the full length of the 
span looks like for typical E-B and Timoshenko versions of this model. This is done by solving 
equation (4) for yL (it won’t be zero when the effect of shear is included) and substituting into (2). 
To keep things simple, it will be assumed that the upstream span is in a state of uniform uniaxial 
stress. So, y0 and φ0 are set to zero. 

 
 
 
 
 
 

 
3 See appendix A for details 
4 The face is defined as a plane that is perpendicular to the web centerline when the web is in 

a relaxed state. The face angle is the angle between a normal to this plane and the x-axis after 
forces are applied. It is also called the bending angle. For models without shear, the face angle is 
equal to the web slope. The shear angle, ψ is the angular contribution to slope from shear 
deformation. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          (a) E-B beam                                               (b) Timoshenko beam 

Figure 2 
Naïve models 

 
The curves in Figure 2 show the shape of the web after it has reached steady state and 

compares it with the Shelton model (which agrees with experiment). In Figure 2(a) the 
downstream end of the E-B beam pivoted with the roller but didn’t move laterally. In 2(b), which 
includes shear deformation, the downstream end has moved laterally, but it falls significantly short 
of the Shelton model. 

So, what is missing? 

SHELTON’S METHOD: CURVATURE TRANSPORT 

Shelton thought about the problem just described. In his seminal dissertation on lateral web 
dynamics [2] he argued that the entry angle changes because slope variation due to upstream web 
curvature is transported onto the roller by the web’s longitudinal motion (pages 102-104). This is 
illustrated in Figure 1 (a reproduction from the dissertation)5. He says, “The difference in the 
lateral velocity of the web edge relative to the roller between the time of passing of Points A and B 
may be expressed as” 

 L L

A BA B

dy dy y yV
dt dt x x

 ∂ ∂
− = − ∂ ∂ 

  (6) 

Then, he divides both sides by the time, ∆t, that it takes for A to move to B. On the right side 
∆t is replaced by the equivalent quantity ∆x/V. As points A and B are moved infinitesimally close 
together the left side becomes the lateral acceleration relative to the roller and the right side 

 
5 When reading some of the references in the bibliography it is important to keep in mind that 

Shelton followed Timoshenko’s sign convention and used a left-handed coordinate system based 
on the assumption that the positive z-axis is directed out of the page toward the reader. Brown, 
Benson and Sievers used right-handed coordinates. 



 
 

becomes the product of V2 and curvature. Adding d2z/dt2 to account for roller motion produces 
equation (7), known as the acceleration equation  

 
2 2 2

2
2 2 2

L Ld y d y d zV
dt dx dt

= +   (7) 

This is used as one of two dynamic boundary conditions (the normal entry equation is the 
other) in a second order solution based on the shape equation for curvature. 

The problem with curvature transport is that it produces an expression for lateral acceleration 
that conflicts with the definition obtained by simply differentiating the normal entry equation. 
Shelton was aware of this and made the following comment about it.  

“Note that Equation 4.1.5 [the acceleration equation] is not merely the derivative of 
Equation 4.1.2 [the normal entry equation]; differentiation of the latter equation results in 
an extra term containing the velocity of roller swivelling, dθ/dt. Because of the assumption 
that shear deflection is negligible, no acceleration can occur as an instantaneous result of 
roller swiveling. But only indirectly as the web curvature changes. A suddenly swivelling 
roller instantaneously swivels the downstream end of the web an equal amount, so that no 
instantaneous change in steering rate occurs, in contrast to the first-order theory of 
Chapter III [which employs a flexible string model of the web].” 

Still, there can be only one value for lateral acceleration at any instant and if the normal entry 
equation is valid, there is no reason to think that its time derivative wouldn’t provide it. 

Regardless of any concern about it, Shelton showed in his dissertation [2] that using equation 
(7) in a dynamic model produced excellent agreement with experiments. He tested four 
configurations; a parallel pair with KL = 2, a parallel pair with KL =10, an oversteering guide and 
an understeering guide. Amplitude and phase response were measured in each case at six different 
frequencies. All had long spans in which the effects of shear were insignificant. 

BENSON’S METHOD: THE MATERIAL DERIVATIVE 

Benson, in a 2002 paper [3], found a better way to derive the acceleration equation. He started 
by assuming that the pivoting velocities of the roller angle, θr, and web face angle, φL, must match 
at the line of entry of the web onto the roller.  He then applied the material derivative and arrived 
at the following expression. 

 r L L Ld D d dV
dt Dt dt dx
θ φ φ φ

= = +   (8) 

Benson chose to organize his model in the form of four first-order equations. So, he wasn’t 
interested in anything like acceleration equation (7) as a boundary condition. Nevertheless, to help 
establish the validity of his model, he showed that equation (8) could be used to derive it. The 
result of his derivation, shown in equation (9) below, included the effect of shear and is in 
agreement with Brown [4].  

 
2 2 2

2
2 2 2

L L L L Ld y d y d z d dV V V
dt dxdt dx dt
ψ ψ = + − + 

 
  (9) 

When shear ψL is eliminated, equation (9) defaults to Shelton’s acceleration equation (7). 

THE ENTRY ANGLE IS CAUSED BY LONGITUDINAL TRANSFER OF MASS 

In a 2017 IWEB paper [4], I showed that the entry angle of the normal entry equation (1) is 
entirely due to the effect of mass transferred longitudinally between spans. I won’t repeat the 
details of the analysis of that paper, but will, instead, summarize the principle results. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         (a)  

                                                                      (b) 
 

Figure 3 
Effect of mass transfer after roller shift 
Without shear (Euler-Bernoulli model) 

In Figure 3(b), the web is shown shortly after a moment of force comes into existence at the 
entry to the roller. In the case shown here, a sudden lateral shift of the roller to the left produced 
curvature with its center at some point far to the right. The curvature created a tapered, 
incremental strain profile which is positive on the left side and negative on the right. The positive 
incremental strain on the left caused a decrease in mass flow from span 1 to 2 relative to the flow 
at the center. This, in turn, caused an accumulation of mass in span 1, shown as the wedge-shaped 
area A. Area A also represents the deficit of mass in span 2. The negative incremental strain on the 
right caused an increase in mass flow from span 1 to 2 and created the wedge-shaped 
accumulation of mass in span 2 labeled B. Area B also represents the deficit of mass in span 1.  

The net effect is angular rotation of the face of the web at the line of entry through an angle, 
β. There is no slipping involved in the formation of β. It is entirely due to variations in mass flow 
that change the relationship between face angle and roller angle from  φL = θr   to φL =  θr + β. 
Analysis of the relationship between the strain profile and mass flow shows that β is defined as, 

 
2

2
L L

r
dy d yd d V

dt dt dx dx
β θ − = − = 

 
  (10) 

When the angle β  begins growing, the web begins moving relative to the roller in a direction 
that reduces the moment that caused it. It will continue to move until the entry angle becomes 
zero. 

For a Timoshenko model with shear, relationship (10) becomes, 

 ( )
2

2
L L

L r
dy d yd d daV

dt dt dx dtdx
ψβ ψ θ − + = − = − 

 
  (11) 

And 

 1 nTa
AG

= +   (12) 



 
 

where n is the shear factor, T is the longitudinal tension, A is the cross-sectional area of the web 
and G is the shear modulus. 

When shear is included in the model, the face between the two spans still rotates as described 
above, but β increases by the factor, a, and the entry angle becomes -β  - ψ. 

It is fair to ask why mass transfer is needed. After all, Shelton’s and Benson’s equations aren’t 
wrong. The answer is that it is an essential part of the physical picture that has been missing and, 
as will be shown in a companion paper, it is the key to understanding how to combine lateral and 
longitudinal behavior in a single model. 

Connections with the methods of Shelton and Benson 
Since Shelton’s E-B model was confirmed by experiment and Benson’s material derivative 

can be used to derive Shelton’s acceleration equation, it should not be surprising to find that they 
are both mathematically equivalent to the mass transfer model. 

Equating the two values of acceleration from Shelton’s model (acceleration of equation (7) 
and the time derivative of velocity from the normal entry equation (1)) produces the second 
equality of expression (10).  

Substituting dyL/dx = φL (true for an E-B beam) in Benson’s material derivative (8) also 
produces the second equality of expression (10). 

Why did Benson’s velocity matching work? 
In its relaxed state, all the particles in a uniform web are assumed to be moving in straight 

lines aligned with the x-axis. As the web deforms, those paths become curved to conform with the 
web shape. It is important to realize, however, that in a moving web, the particles following those 
paths will not all be travelling at the same speed. For example, particles on the outside edge of a 
curve, and not in proximity to a roller, will be travelling faster than particles on the inside edge. 
Then, when they arrive at the roller, where, it is assumed, they will “stick” to its surface, they must 
take on its velocity. That velocity must be the same at all points along the line of entry. Benson 
recognized this fact in his velocity matching boundary condition when he said, “It is further 
expected that the web will stick to the roller for all points of first contact – not just at the web’s 
centerline. To achieve that, we must also match the rotational velocities of the roller and the web.” 
That can only happen if the rate of mass flow changes. So, although he made no mention of it, 
velocity matching at the roller effectively engages the mathematics of mass transfer.6  

Limitations of beam theory models 
Beam theory, because of its 1-dimensional nature, accommodates only simple strain profiles 

produced by moments due to pivoting or shifting of rollers. There are other interesting problems 
like concave roller applications that can only be solved with 2-D numerical methods like those 
described in “Effects of Concave Rollers, Curved-Axis Rollers and Web Camber on the 
Deformation and Translation of a Moving Web” [5]. 

 
6 I owe Dilwyn Jones a debt of gratitude for reviewing early versions of this paper and 

patiently defending Benson’s method. I was inclined to distrust anything that didn’t explicitly 
mention mass conservation, but he convinced me of its validity, using an argument like the one I 
just made. 



 
 

CONCLUSION 

Mass transfer7, in the form of the continuity equation, has been part of tension analysis for 
decades, but it has not been used explicitly in the analysis of lateral behavior. It is now clear, 
however, that it is a vital part of the conceptual framework for both subjects. 

 
 
 

APPENDIX A 

WEB SHAPE EQUATIONS FOR A BEAM MODEL 

The Elastic Curve  
Shelton was the first to use beam theory in models of lateral web dynamics. He derived 

equations for the elastic curve of single spans using both Euler-Bernoulli and Timoshenko beam 
theories [6, 7]. The method presented here is due to Lisa Sievers and is particularly suited to 
multi-span problems [8]. It begins by first observing that the bending and shear angles are 
additive. The face is defined as a plane that is perpendicular to the web centerline when the web is 
in a relaxed state. The face angle ϕ is the angle between a normal to this plane and the x-axis after 
forces are applied. It is also called the bending angle. For models without shear, the face angle is 
equal to the web slope. The shear angle, ψ is the angular contribution to slope from shear 
deformation. 

                                                         
dy
dx

φ ψ= +       (13) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4   
Relationship of Slope, shear angle and bending angle 

                                   slopedy
dx
=  , shear angleψ = , bending angleφ=  

She then applied Hamilton’s principle [9] to derive the equations of motion.  
This produces a solution that includes both time and spatial derivatives. The time derivatives 

are useful in determining the potential effect of natural vibrations. She found that the separation 
between the natural frequencies of the web and frequencies of interest in typical applications, 
while not as great as one might expect, are usually adequate to safely ignore the time-related 

 
7 And its close cousin, transport of strain. 



 
 

terms. Details may be found in several references [8, 10, 11]. When the time-related terms are 
removed, the following two equations are left,  

                                                      
2

1 0
2

nT d y d
AG dxdx

φ + − = 
 

  (14) 

                                                      
2

0
2

d AG dyEI
n dxdx

φ φ + − = 
 

 (15) 

These relationships can be manipulated to obtain the same fourth order differential equation 
found by Shelton. 

                                                           
4 22 0
4 2

d y d yK
dx dx

− =   (16) 

where, 

                                                           2

1

TK
nTEI
AG

=
 + 
 

  (17) 

The solution to (16), familiar to all web handling researchers, is 

                                   ( ) ( )( ) sinh cosh1 2 3 4y x C Kx C Kx C x C= + + +  (18) 

The solution just described applies to a Timoshenko beam model that includes the effects of 
shear deformation. It defaults to the Euler-Bernoulli (E-B) beam model if the shear factor n is set 
to zero.   

Boundary Conditions 
In this model, as in all other multi-span models to-date, the interaction of the web with rollers 

is greatly simplified. The width of the contact zone in the process direction is assumed to be zero.  
Four boundary conditions are required. Lateral position at the upstream and downstream 

rollers provide two of them. 
Sievers believed that the bending angle was a better choice than slope for a boundary 

condition because it would be continuous across rollers, while the slope and shear would be 
discontinuous. This is incorrect. The effect of wrap angle on rollers causes the bending angle to be 
discontinuous. However, the choice of bending angle for a boundary condition is advantageous for 
another reason. It is directly related to the roller angle (or, more precisely, its projection on the 
plane of the web). 

Expressions for shear angle ψ and bending angle ϕ are derived from equations (13), (14) and 
(15).  

                                                        
3

3
n d yEIa

AG dx
ψ = −   (19) 

where 



 
 

                                                             1 nTa
AG

= +   (20) 

and, 

                                                        
3

3
dy n d yEIa
dx AG dx

φ = +

  (21) 

So, the boundary conditions of the Timoshenko beam model will be, 

0 0
3 3

03 30 0

y y y yx x L L

dy n d y dy n d yEIa EIa Ldx AG dx AGdx dxx x Lx x L
φ φ

= == =

+ = + =
= == =

 (22) 

Equation (18) and its derivatives are substituted into the four equations of (22) which are then 
solved simultaneously for C1, C2, C3 and C4.  

The Static Equation of Web Shape. 
Inserting values for C1, C2, C3 and C4 in (18) and collecting terms, 

                              ( ) ( ) ( ) ( )( ) , , , , , ,0 0 4 5 0 6y x y y y g x K L g x K L g x K LL Lφ φ= + − + +  (23) 

where, 

     

( )
( ) ( )

( )

cosh( ) cosh( ) cosh( ) sinh( ) 1( , , )4 sinh( ) 2 cosh( 1

cosh( ) 1 cosh( ) 1 sinh( ) sinh( ) sinh( )
( , , )5 [ sinh( ) 2 cosh( 1 ]

sinh( ) sinh( ) sinh
( , , )6

Kx KL KL Kx Kax KLg x K L KLa KL KL

KLa Kx Kax KL Kx KL Kx KL
g x K L Ka KLa KL KL

Kx KL
g x K L

+ − − − −
=

− −

− − − − − − +
=

− −

− +
=

( )
( )

( ) cosh( ) 1 ( )(cosh( ) 1)
[ sinh( ) 2 cosh( 1 ]

KL Kx KLa KL Kx Ka L x KL
Ka KLa KL KL

− − − − + − −
− −

  (24) 

Equations (24) are called shape functions. 
Following the example of Young, Shelton and Kardimilas (YSK) [12], yo appears twice in 

expression (23). This reduces the number of shape functions from four to three.  
Two other equations that will be needed later are the first and second derivatives of (23) at x 

= L. 

                                          ( )( ) 1
0 2 0 3

hdy x y y h hL Ldx LL
φ φ= − + +   (25) 

                                          ( )2 ( ) 31 2
0 02 2

gg gd y x y yL L L Ldx LL
φ φ= − + +   (26) 

where, 



 
 

                                            

( )
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( )( )
( )

sinh( ) 1
1 sinh( ) 2 cosh( ) 1

1 1 cosh( ) sinh( )
2 sinh( ) 2 cosh( ) 1

1 1 cosh( )
3 sinh( ) 2 cosh( ) 1

h
KLa KL a

a KLa KL KL

a KL KLa KL
h

a KLa KL KL

a KL
h

a KLa KL KL

−
=

− −  
+ − +

=
− −  

− −
=

− −  

  (27) 
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2 2 cosh( ) 1
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3 sinh( ) 2 cosh( ) 1

K L a KL
g

a KLa KL KL

KL KLa KL KL
g

a KLa KL KL

KL KL KLa
g

a KLa KL KL

−
=

− −  
−

=
− −  

−
=

− −  

  (28) 
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