
The Connection Between 
Longitudinal and Lateral Web 

Dynamics

Jerry Brown
IWEB 2019



The elusive entry angle

• Where does the entry angle come from? This paper will show that the 
answer to this question reveals a connection between longitudinal 
and lateral behavior that has gone largely unnoticed.



The elusive entry angle

• In beam models, entry angle refers to the angle between the tangent 
to the web centerline and the normal to the roller axis at the line of 
entry onto the roller. 

• Whenever the entry angle becomes non-zero, a web that is moving 
longitudinally through a process will also move laterally on the roller 
in a direction that returns the entry angle to zero.



The elusive entry angle

• If the web is modeled as a perfectly flexible string, this behavior is 
intuitively obvious because it bends sharply on entering a roller that is 
pivoted or shifted laterally. 

• However, in the case of the most commonly used Euler-Bernoulli (E-B) 
beam model, the web can’t make a sharp bend. If it is initially 
perpendicular to the roller axis, beam theory says that, provided 
there is no slipping, it should remain perpendicular as the roller is 
shifted or pivoted and thus wouldn’t move.

• We know from experience, however, that a real moving web begins to 
move laterally soon after a roller pivots or shifts? So, how can this be? 



Normal entry equation

• The entry angle enters into lateral dynamic analysis through this 
equation. It is commonly referred to as the normal entry equation. 
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A naïve lateral dynamic solution

• Assume for a moment that you’re a new web handling researcher 
who has never done an experiment on real web.

• You might develop a model in the following way.



Shape of the web

• Slope is calculated from a static analysis of web shape. This is the 
equation for lateral position y(x) that results when face angles  φL, φ0
and lateral displacements, yL, y0 are chosen as boundary conditions. 

• The shape factors, g4, g5 and g6 depend on span dimensions, 
mechanical parameters of the web and distance along the span.

• Derivation of this equation is documented in Appendix A of the paper.
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Slope

• Taking the derivative of the previous equation and substituting L for x
we get the slope at the line of entry to the downstream roller.
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A naïve solution for yL

• The face angle φL in the previous equation is set equal to the roller 
angle θr. Making this change and substituting into the normal entry 
equation, the following relationship is obtained.

• This can be solved for yL To keep things simple, assume that y0 and φ0
are zero - upstream span in a state of uniform uniaxial stress.
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Solutions after 5 time constants

Entry angle stays fixed at zero. Entry angle changed, but 
position falls short.



Shelton’s solution

• Shelton, in his seminal dissertation on lateral web dynamics, argued 
that the entry angle changes because slope variation due to upstream 
web curvature is transported onto the roller by the web’s longitudinal 
motion. 



Acceleration equation

• Using this idea led to an equation for acceleration.
• This is used as one of two dynamic boundary conditions (the normal 

entry equation is the other) in a second order solution based on the 
shape equation for curvature.
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Problem with acceleration equation

• The problem with curvature transport is that it produces an 
expression for lateral acceleration that conflicts with the definition 
obtained by simply differentiating the normal entry equation. Shelton 
was aware of this and made the following comment about it. 

• “Note that Equation 4.1.5 [the acceleration equation] is not merely the 
derivative of Equation 4.1.2 [the normal entry equation]; differentiation of 
the latter equation results in an extra term containing the velocity of roller 
swivelling, dθ/dt. Because of the assumption that shear deflection is 
negligible, no acceleration can occur as an instantaneous result of roller 
swiveling. But only indirectly as the web curvature changes. A suddenly 
swivelling roller instantaneously swivels the downstream end of the web an 
equal amount, so that no instantaneous change in steering rate occurs, in 
contrast to the first-order theory of Chapter III [which employs a flexible 
string model of the web].”



But it works

• Still, at any moment there can be only one value for lateral 
acceleration and if the normal entry equation is valid, there is no 
reason to think that its time derivative wouldn’t provide it.

• However, regardless of any concern about it, Shelton showed in his 
dissertation  that using the acceleration equation in a dynamic model 
produced excellent agreement with experiments. 

• He tested four configurations; a parallel pair with KL = 2, a parallel 
pair with KL =10, an oversteering guide and an understeering guide. 
Amplitude and phase response were measured in each case at six 
different frequencies. 



Benson’s method

• Benson, in a 2002 paper, found a better way to derive the 
acceleration equation. He started by assuming that the pivoting 
velocities of the roller angle, θr, and web face angle, φL, must match 
at the line of entry of the web onto the roller.  He then applied the 
material derivative and arrived at the following expression.
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Benson’s method

• Benson chose to organize his model in the form of four first-order 
equations. So, he wasn’t interested in anything like an acceleration 
equation as a boundary condition. Nevertheless, to help establish the 
validity of his model, he showed that his material derivative equation 
could be used to derive it. 

• The result of his derivation, shown in the next slide, included the 
effect of shear and is in agreement with the expression derived by 
myself from considerations of mass transfer. 



Benson’s method

• When shear ψL is eliminated, this defaults to Shelton’s acceleration 
equation – as it should.
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The entry angle is caused by longitudinal 
transfer of mass

• In a 2017 IWEB paper I showed that the entry angle of the normal 
entry equation is entirely due to the effect of mass transferred 
longitudinally between spans. I won’t repeat the details of the 
analysis of that paper, but will, instead, summarize the principle 
results.



Effect of mass transfer after roller shift



Effect of mass transfer after roller shift

• The net effect of the mass transfer is angular rotation of the face of 
the web at the line of entry through an angle, β. There is no slipping 
involved in the formation of β. It is entirely due to variations in mass 
flow that change the relationship between face angle and roller angle 
from  φL = θr to φL =  θr + β. Analysis of the relationship between the 
strain profile and mass flow shows that in the absence of shear 
deformation, β is defined as,
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β with shear deformation
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Why worry about mass transfer?

• It is fair to ask why mass transfer is needed. After all, Shelton’s and 
Benson’s equations aren’t wrong. The answer is that it is an essential 
part of the physical picture that has been missing and, as will be 
shown in a companion paper, it is the key to understanding how to 
combine lateral and longitudinal behavior in a single model.



More connections with the methods of 
Shelton and Benson

• Equating the two values of acceleration from Shelton’s model (the 
acceleration equation and the time derivative of velocity from the 
normal entry equation ) produces a key relationship from mass 
transfer analysis. 

• Substituting dyL/dx = φL (true for an E-B beam) in Benson’s material 
derivative also produces this equation.
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Why did Benson’s velocity matching work?

• In its relaxed state, all the particles in a uniform web are assumed to 
be moving in straight lines aligned with the x-axis. As the web 
deforms, those paths become streamlines that are congruent with 
the web shape. It is these curved streamlines to which the shape 
equations apply. 

• It is important to realize, however, that in a moving web, the particles 
following those paths will not all be travelling at the same speed. For 
example, particles on the outside edge of a curve, and not in 
proximity to a roller, will be travelling faster than particles on the 
inside edge. Then, when they arrive at the roller, where, it is assumed, 
they will “stick” to its surface, they must take on its velocity. That 
velocity is the same at all points along the line of entry. 



Why did Benson’s velocity matching work?

• Benson recognized this fact in his velocity matching boundary 
condition when he said, “It is further expected that the web will stick 
to the roller for all points of first contact – not just at the web’s 
centerline. To achieve that, we must also match the rotational 
velocities of the roller and the web.”

• That can only happen if the rate of mass flow changes. So, although 
he made no mention of it, velocity matching at the roller effectively 
engages the mathematics of mass transfer. 



Why did Benson’s velocity matching work?

• I owe Dilwyn Jones a debt of gratitude for reviewing early versions of 
this paper and patiently defending Benson’s method. I was inclined to 
distrust anything that didn’t explicitly mention mass conservation, but 
he convinced me of its validity, using an argument similar to the one I 
just made.



Conclusion

• Mass transfer, in the form of the continuity equation, has been part of 
tension analysis for decades, but it has not been used explicitly in the 
analysis of lateral behavior. It is now clear, however, that it is a vital 
part of the conceptual framework for both subjects.
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