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Strain propagation in a web that isn’t moving
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Current models

• Current models don’t include propagation effects.

• Processes, so far, have not required it.

• In polymers sound travels at 470 to 1,800 m/s.

• It would take only .002 to .006 sec to travel a 3 m 

span.

• The transport time at 2.5 m/s would be 1.2 sec.



Then, why consider propagation?

• There are ways propagation interacts with 

transport motion to affect even slow processes.

– Propagation of strain discontinuities.

– Amplification of repetitive disturbances.

– Damping of a solitary disturbance.

• Line speeds are increasing. In a paper line running 

at 50 m/s the transport time for 3 m is only .06 sec.

• It will help future work on out-of-plane motion, 

viscoelasticity and aerodynamics.



Earlier work

• Many papers have been published on out-of-plane 

vibrations in “traveling strings”.

• Some papers treated the longitudinal tension 

variation that accompanied the out-of-plane 

motion.

• Nothing seems to have been published on 

longitudinal tension propagation as a principal 

feature of solid material transport.



Assumptions

• Both rollers are driven with perfectly controlled 
speeds.

• Coulomb friction exists between the web and the 

rollers.

• On the roller, the web obeys the capstan 

relationship.



Assumptions (Cont.)

• The web is uniform in its relaxed state.

• The web is elastic (obeys Hooke’s law).

• The web is perfectly flexible in the transverse 

direction.



The dependent variable



is the displacement of a web particle caused by material 

deformation plus the displacement caused by the transport 

velocity of the web.



Independent variables
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The boundary conditions
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The PDE Model

P.D.E. 

Boundary 

Condition I
Boundary 

Condition II

Inertia Elasticity

It looks like all the pieces are here for a solution. Unfortunately, this 

isn't the right problem. The web and its boundaries are going to move 

off to the right with a speed approximately equal to the transport 

velocity. It's like a flying carpet. Something more is needed.

¶

¶
=

+
¶

¶

F
HG
I
KJ

+

x

x

t
V

x
a

1

1 1b g
¶

¶
=

x

t
V

b

r
x x

0

2

2

2

2

¶

¶
=

¶

¶t
E

x



The Euler Description

• The Euler description is commonly used for problems in 

moving media.

• It treats the motion of the medium as a field in which the 

velocity is known at all times and positions.

• Then, the equations describing the physical laws can be 

modified to apply to a succession of material particles 

passing a fixed point.

• The technique is commonly used in fluid mechanics where 

it is called the Material Derivative.



The Euler description (Cont.)

• To avoid confusion, the description we  have been using 

until now is given its own name, the Lagrange description. 

This is the familiar Newtonian perspective in which 

quantities, such as acceleration and force, are assumed to 

be associated with bodies that are moving relative to the 

observer.

• Note, that neither description has anything to do with 

moving coordinate systems. Moving coordinate systems 

can be used to good advantage in problems like this, as 

shown by Miranker [10]. But, that is a different technique.



The transformation equations

Total Defor-

mation

The first step is to separate the particle velocity into two parts - one 

due to the general transport motion and the other due to material 

deformation.

Transport

  motion

Total Defor-

mation

Transport

  motion

The second step is to apply the Euler description to the deformation 

term. Subscripts are now used to identify the displacement variable as 

either Lagrange (L) or Euler (E).
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The transformation equations (Cont.)

Total Variable

To be consistent, the strain will also be separated into two parts - a 

constant component that exists at time zero when the only particle 

velocity is the transport motion, plus a component due to the 

disturbance.

Initial 

Strain
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The Wave equation for a moving 

medium

E.D.  P.D.E. 

Boundary 

Condition I

Boundary 

Condition II

Inertia Elasticity

Applying the Euler description to the one-dimensional wave equation and to the boundary 

conditions produces the model above. The P.D.E. is the wave equation for a moving 

medium. It appeared in one of the earliest traveling string papers. In that instance it 

applied to out-of-plane motion.

¶

¶
= -

+

¶

¶

F
H
I
K

x x


E
i

E

t
V

x

1

11b g
¶

¶
= -

¶

¶
+

x xE
i

E

t
V

x
f t( )

r
x x x x

o
EE

t
Vi

E

x t

E

x
Vi E

x

¶

¶
+

¶

¶ ¶
+
¶

¶

F
H
GG

I
K
JJ =

¶

¶

2

2
2

2 2

2
2

2

2



The solution

• Laplace transforms are used to solve the P.D.E.

• Although the wave equation for a moving medium 

appears often in the traveling string literature, the 

advantage of using the Laplace transform method 

on it seems to have been missed.

• It provides a closed form solution that can be 

easily modified for a variety of inputs.

• Refer to the paper for details.



The P.D.E. solution (Cont.)

• The solution for strain is:

C, the velocity of sound, is typically much larger than

Vi. It is 470 to 1,800 m/s for polymers and about 5,000

m/s for steel and aluminum.  is always smaller than 1.
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Step input

• Substituting the transform for a step input and inverting 

produces:
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Step response

• Strain at roller B for a .01% increase in B’s speed.  
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Comparison with the O.D.E. model

• The model used for many years to analyze tension control 

problems can serve as a check for the P.D.E. At time scales 

where the propagation phenomena are imperceptible the 

models should agree.  The O.D.E. model is:
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O.D.E. comparison (Cont.)

• The step response for the O.D.E. model is shown below. It 

can be shown, mathematically, that the P.D.E. converges to 

this when Vi << C. The P.D.E. solution is shown again for 

comparison.
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O.D.E  comparison (Cont.)

• Comparison of step response of the O.D.E. and P.D.E. 

models for Vi = 10 m/s, C =1500 m/s, L = 1 m, 1= .0005, 

dv = .0001Vi
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A high-resolution view of the 

solutions
• P.D.E. - solid red line. O.D.E. dashed blue line.
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Propagation along the span
• The strain profile of the span is shown at 4 different times.
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Step response at high speed 

• Behavior of the P.D.E. is more obvious when the transport 

velocity gets close to C. For example, if Vi is 25% of C:
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Propagation at high speed

• Here is the strain profile of the span at 5 different times for 

Vi = 25% of C.
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Response to a single pulse

• The solution for a single, brief pulse at roller B looks like 

this:
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Response to a single pulse (Cont.)

• The graph below shows a pulse at three different times as it 

moves through the span.
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Transport damping

• Decay of a single pulse: L = 1 m, Vi = 10 m/s, L/Vi = .1 s, C 

= 1500 m/s, Vi = .7 % of C 
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Energy transfers

• Miranker in 1960 pointed out that energy is not conserved 

in transverse oscillations of a moving string.

• It is apparent that similar conclusions apply to longitudinal 

strain variations.

• Energy can be exchanged with the rollers in the following 

way. When a pulse arrives at a roller there is a change in 

roller torque due to the tension change. And, since the 

roller is rotating, work is done, either on the roller or on 

the web.

• In addition, strain energy can be transferred to the 

downstream span during the time the pulse is at roller B.



A high-speed view

• If Vi is increased to 25% of C more detail becomes visible.
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Repetitive pulses 

• The amplitude for a single pulse is very small (dv/C). That 

may not be the case for a repetitive pulse. 

• If the period is an integer fraction of the time for the pulse 

to travel up the span and back it will be reinforced and 

amplified. 

• Depending on how much the pulse is damped by 

viscoelasticity and friction, it may even be amplified when 

the period is an integer multiple of the round-trip time.

• Without damping, the pulse can grow to the same 

amplitude as if it were a step change.



Sinusoidal disturbances

• The sinusoidal solution looks like this:
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Sinusoidal disturbances (Cont.)

• A sinusoid will reinforce itself in the same manner as a 

repetitive pulse. It grows to an amplitude of dv/Vi, with a 

time constant of L/Vi.
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High speed behavior

• The condition for amplification of a sinusoidal disturbance 

raises interesting questions. As the transport speed 

approaches C, the resonant frequencies become zero for all 

n. Also, the upstream velocity becomes zero. Could one 

see a standing wave of zero frequency?
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High speed behavior (Cont.)

• Study of the traveling string literature suggests that a more 

sophisticated model is needed when the transport velocity 

is a significant fraction of the speed of sound, C.

• In particular, the variation in mass per unit length (caused 

by strain) should be included in the model. This creates a 

nonlinear problem requiring numerical methods.



Conclusions

• This model has two principal uses.

– As a step toward more realistic models. These will likely require 

numerical methods. Having a closed-form solution for simple 

cases will provide a way to check the programs.

– As a diagnostic tool for problems whose causes may have been 

unrecognized in the past.

• Some shortcomings that could be addressed in more 

sophisticated models are:

– There is no provision for variation in mass per unit length. The 

variation is small but it could be important because conservation of 

mass is central to tension behavior in webs. 



Conclusions (Cont.)

– There is no provision for viscoelasticity, damping or friction. 

Viscoelasticity will have a particularly strong effect on the velocity 

(dispersion) and amplitude of disturbances.

– Laboratory work should be done before going on to more complex 

models.

• The following insights may help in understanding current 

problems on process lines.

– If a strain pulse is brief (of the order of L/C) it will be very small. 

The amplitude compared to a continuous step will be smaller by 

Vi/C. 

– The upstream velocity of propagation is C-Vi. The downstream 

velocity is C+Vi.



Conclusions (Cont.)

• When the speed of a roller in a span increases suddenly to 

a new steady value, the initial change in strain will be on 

the order of dv/C. The total strain in the span grows 

through a process of propagation, reflection and 

accumulation. On large time scales the propagation 

behavior is imperceptible and the results conform to the 

O.D.E. model.

• A single brief pulse will be damped as it is reflected back 

and forth between the rollers of the span. This transport 

damping will contribute to other energy losses that remove 

energy from the pulse.



Conclusions (Cont.)

• An example of a single pulse is a sudden slip on a roller 

due to a splice.

• A repetitive disturbance can be amplified if its period is an 

integer fraction (or integer multiple if damping is low) of 

the time for the pulse to travel upstream and back. The 

final amplitude can be as large as if the pulse were a step.

• An example of a repetitive pulse would be the cyclic 

disturbance of an embossing roller.



When is a web slender?

• That depends on the frequency spectrum of the 

disturbance. If the width of the web is less than 

1/10 of the wavelength of the highest frequency 

component, then transverse effects will be 

negligible.

• A graph of wavelength versus frequency for 

several different materials is shown on the next 

visual.
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How much does web speed affect 

longitudinal natural frequencies?

• At realistic web speeds the resonant frequencies are 

affected very little.

• The ratio of moving to stationary resonant frequencies is 

shown below. This function is plotted on the next visual.
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What are typical values for 

longitudinal resonant frequencies?

• The next visual shows typical resonant frequencies 

(n=1) for eight different materials over a range of 

span lengths.

• The frequencies are for zero web speed. For a 

moving web the correction factor in the previous 

graph should be applied.
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What frequencies can be expected 

for disturbances?

• Besides the obvious case of an eccentric roller:

– Printing could produce a small disturbance at each repetition of the repeat 

length.

– An embossing cylinder could produce a disturbance for each repeat of the 

pattern.

– A vacuum roller, used to increase traction, could produce a disturbance as 

each row of holes in the roller releases the web.

• The next visual shows the frequency of one disturbance 

per revolution of a roller as a function of web speed and 

roller diameter.

• The frequency from this graph should be multiplied by the 

number of repeats per revolution.
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