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Assumptions

• Traction on rollers

• Negligible turning torque for rollers

• No viscolelastic or inertial effects



Earlier Work

• Shelton’s example for beam modeling – Dissertation 1968.

• Swanson’s spreading experiment – IWEB 1997.

• Swanson’s cambered web experiments – IWEB 1999.

• Shelton’s survey of cambered web problems – IWEB 1997

• Markum and Good’s concaver roller experiments – IWEB 

2001

• Olsen’s proposal to use of frozen-in strain concept for 

nonuniform webs – IWEB 2001



Particle Displacements

Particle displacement in x direction = u

Particle displacement in y direction = v



Plane Stress, x & y Strains

• Longitudinal strain

• Cross web strain
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Plane Stress, Angular Displacements

• Angular displacement of infinitesimal element 

originally parallel to x-axis

• Angular displacement of infinitesimal element 

originally parallel to y-axis

x

v
v

x






y

u
u

y








Plane Stress, Shear & Rotation

• Shear

• Rotation
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Interpretation of Rotation

du = - 0.1 dx

dv = + 0.1 dy
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Deformed Coordinates

• Deformed x coordinate

• Deformed y coordinate

x u  

y v  



Stress

• x-axis stress

• y-axis stress

• Shear 
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Novoshilov’s Equations of 

Equilibrium

• X direction

• Y direction
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Downstream Boundary Conditions

• Normal Entry Rule

• General case

• For uniform web

y = angle of tangent to particle path, relative to x-

axis.

qr = angle of roller axis relative to y-axis
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Downstream Boundary Conditions

• Normal Strain Rule (approximation)

Vu and Vd are upstream and downstream 

circumferential roller velocities.

o is the longitudinal strain at the entry to the 

upstream roller.
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Comparison of Concave & Curved-

axis Rollers

Concave roller based on Markum and Good experiment.

Boundary a 

Rc = 
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Comparison of Concave & Curved-

axis Rollers

Rb = 21m
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Curved-axis roller using same span parameters as 

Markum and Good experiment. 



Comparison of Concave and 

Curved-axis Spreader Rollers

• Span parameters

• Concave roller

– Profile radius Ro = 10.16 m

– Center diameter, Dc = 55.5 mm

• Curved-axis roller

– Radius = 21 m

Material Modulus Caliper Width Length Tension

(Mpa) (mm) (m) (m) (N)

LDPE 165.5 25.4 0.152 0.419 17.8
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Spreader Boundary Conditions

• Sides

• Upstream roller

• Downstream roller

Concave Curved-axis

0n  0n 

0u 
ov y 

0xv 

 1 1u

x o

d

V

V
   

1sinx r

b b

y y
v

R R
q   

   
 

 

 
 

1
1

1

u o

x o

u

V
f y

V f y


 


   

  

  1 2(1.767 ) .00340f y m y 



Net Spreading

  

Net spreading strain = s y x   



v Displacement Contours

  

These contours of constant v are not particle 

paths. But, they have similar slopes



y Contours

  

The rollers show similar patterns of cross web stress at the downstream roller. 

The curved-axis spreader shows a region of compressive stress (shaded) . 

But, levels are low. There is a similar pattern for the concave roller that is just 

beyond the area shown in the graph. It has a peak value of –825 Pa.



Magnification of Lateral Errors by 

Concave Rollers

• There has been a presumption that because of

– The lateral shifts seen with tapered rollers.

– And the centering behavior of a crowned roller.

concave rollers would amplify lateral registration errors.

• This is technically true. However, the effects are generally 
small. For example, with the extreme profile of “parabolic 
2” used in the Markum and Good experiment, the 
magnification would be only 1.12 (1 inch error at upstream 
roller increases to 1.12 inch error at spreader). This ratio 
held for lateral errors up to ½ web width. Doubling the 
profile radius reduced the magnification to 1.06. 



Magnification of Errors by Curved-

axis Rollers
• Curved-axis rollers have never been suspected of 

amplifying lateral errors. Analysis shows they do. But, the 
effect is much smaller than for concave rollers of the same 
spreading capability.

• The curved-axis roller in the previous example amplifies 
errors by 1.015.

• Although the curved-axis error magnification is less, the 
net difference in error at the spreader is only 10%.

• So, when the maintenance problems of curved-axis rollers 
are considered, the concave roller may often be a better 
choice. Particularly if it is designed to have no more 
spreading than absolutely necessary.



The Cambered Web

Start by assuming that a cambered web is created on a 

tapered core in the manner described by Swanson in his 1999 

IWEB paper.
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Roll wound on
tapered core as in
Swanson's experiment

Relaxed web

 



Mass Flow in the Cambered Web

 1 1u o

x xo

d o

V R y

V R
 


  

Applying the mass flow concepts of the normal strain rule to 

the cambered web leads to the following relationship for the 

longitudinal strain at the entry to a roller.

• Vu and Vd are the upstream and downstream roller velocities.

• Ro is the radius of curvature of the outside edge of the web.

• xo is the longitudinal strain at the outer edge of the

upstream span.

• And xo is zero immediately following the unwinding roll.



Normal Entry for a Cambered Web

For the P. D. E. model, the boundaries are those of the 

relaxed web. So, the particle paths of the relaxed web are 

circular arcs.



Normal Entry for a Cambered Web

The curved reference geometry alters the definition of y, the 

tangent angle to the deformed particle paths.

 
1/ 2

2 2/ tandy x r x dx dxq   

So, the tangent angle to the deformed particle path at the roller is,

    1
1tan 1 tan 1 tanx y c x y c rv uy  q  q q


           

And,                            

where vx is the angular displacement in the y position of a web 

particle relative to x, qc is the angle of camber at the downstream 

roller and qr is the roller misalignment.
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Boundary Conditions at the Edges

The normal stress and the tangential shear will be zero at 

the edges.

2 20 cos sin 2 sin cosn x y xy          
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 is the angle of the boundary relative to the x-axis.



Boundary Conditions Upstream

The x displacement, u , is set to zero. 0u 

The y displacement, v , can be determined by a solution for 

the upstream span. If that is not available, the longitudinal 

strain for the downstream roller can be used to estimate v. 

xv dy C   

C can be chosen arbitrarily to position the web vertically.



Comparison of P. D. E. Results With 

One of Swanson’s 1999 Tests, x
L = 2m, W = 0.3048m (12 In.), E = 4.14e9Pa, h = 23.4m, Tavg = 32.5N, Rw

= 139m. (Neutral axis of relaxed web is 14.4mm above y-axis at x = 2m)

Longitudinal stress for aligned rollers, shown on undeformed domain. Note 

the surprising uniformity from end to end.



Elastic Curve of Neutral Axis

So, deflection at the downstream roller is -18 m (below the position of a 

perfectly straightened web). 

Plotted relative to 

a horizontal line 

through the center 

of the web at the 

upstream roller.



Result of Comparison

• Swanson measured –300m deflection. The model 
predicted –18.1m. Both of these values are very small 
compared to the initial camber offset of 14,400m in the 
relaxed web (0.125 and 2.1 %). The difference could be 
due to measurement error or some discrepancy in the test 
setup.

• Both the model and the test showed that a cambered web 
becomes nearly straight between aligned rollers



Conclusions From Cambered Web 

Modeling With Parallel Rollers

• The curvature at the downstream roller is, as Swanson 
predicted, between 0 and 1/Rw (actually a very small 
positive value). 

• A cambered web has a small negative displacement 
relative to a perfectly straight web. This is in agreement 
with Swanson’s tests. It was true in all 9 of his reported 
results.

• The longitudinal stress will increase linearly from a 
minimum at the convex edge to a maximum at the concave 
edge.

• The longitudinal tension profile across the web will be 
very uniform throughout the span. 



Beam Model for a Cambered Web

• A beam model was developed using the normal strain 

relation at the downstream roller to estimate the fourth 

boundary condition based on the assumption that

• Thus if,

• The end moment is
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Beam Model for a Cambered Web

• The P. D. E. model shows this moment estimate to be very 

accurate for a wide range of L/W.

• The resulting model is an equation that has the same 

algebraic form as Shelton’s misaligned roller equation.

• But, Kc and the coefficients are different.
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Beam Model for a Cambered Web

• Kc has an additional factor to account more completely for 

the effect of tension on curvature.

• And the curvature at the downstream roller is the 

difference between the initial curvature and the effect of 

the end moment.
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Beam Model for a Cambered Web

• The coefficients reveal that the solution is the sum of the usual 

misaligned roller equation plus new terms that add the effect of the 

camber and end moment.
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Comparison of the P. D. E. and 

Beam Models for a Cambered Web

• In the next slide the value of ycmax/YL will be 

plotted against L/W.



Comparison of the P. D. E. and 

Beam Cambered Web Models
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Conclusions

• It has been shown that the new method can be successfully 
applied to the following situations.

– The spreading behavior of concave and curved-axis rollers.

– The deflection and deformation of a cambered web.

– The development of a beam theory model for a cambered web.

• The new method can evaluate the potential for damage to 
webs by producing precise and detailed descriptions of 
stress/strain fields throughout spans.

• It is evident that much more can be done in exploring these 
and other applications. Additional simplified models can 
be developed and where that is not possible, results can be 
tabulated for everyday use.



Conclusions

• A beam model of the cambered web has been developed 

and shown to produce the same results as the new method 

for small strains.

• It has been shown that the concave and curved-axis rollers 

behave very much alike and that concave rollers have an 

undeserved bad reputation.

• It has been shown that camber in a web can produce large 

variation in longitudinal stress across the width. But, it 

does not cause large lateral misalignment errors.

Beyond illustrating the capabilities of the method, the following 
things have been accomplished.


