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A Continuation of Earlier Work

• A nonlinear PDE model, suitable for use with 

low-cost FEA software.

• Straightforward three-dimensional model is 

problematic for a low-cost FEA PDE solver.

• So, a two-dimensional solution was sought.

• Inspiration came from large-deflection plate 

theory .



Features of the Model

• Allows analysis of both in-plane and out-of-

plane misalignment, including large rotations.

• Based on Novoshilov’s equations for small 

strains and large rotations

• Incorporates the normal entry and normal 

strain Rules 



Can’t predict wrinkling

• An ideal model for a twisted web would include 

bending behavior so that wrinkling can be 

analyzed. 

• Theodore von Karman developed a candidate that 

looks attractive.

• With nonlinear improvements it might be capable 

of predicting elastic instability.  



Von Karman Model
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Unfortunately, high order derivatives on left side of last 

equation are problems for low-cost FEA.



Unbuckled Web is Easier

• Curvatures due to twisting are small and the 

bending moments are insignificant. 

• Only buckling produces large curvatures in the 

form of troughs. 

• Therefore, the problem can be separated into two 

parts – unbuckled and buckled.

• This model treats the unbuckled twisted web.



Earlier Work

• Good and Straughan developed a flat model based 

on an estimate of the MD elongation profile in a 

twisted web.

– Used Timoshenko’s theory of buckling in a 

cylindrical shell to predict onset of wrinkling.

– Did not incorporate normal strain or normal 

entry conditions.

– Provided good experimental confirmation



Earlier Work

• Mockensturm developed a fully nonlinear model 

based on modern plate theory (Naghdi).

– Difficult mathematics. But, maybe worth the effort.

– Model predicts onset and shape of troughs.

– Does not appear to incorporate normal strain and 

normal entry rules.

• Conservation of mass mentioned. But, it is unclear how it is 

enforced.

– No experimental confirmation.



The Model

• Zero MD curvature.
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Strains

• Strains 

relative to 

deformed 

coordinates

• Expressed in 

undeformed 

coordinates
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Equilibrium Equations

• σxx , σyy , and σxy are the stresses in the directions 

of the deformed coordinate system.
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Direction Cosines

i1 (Deformed x) i2 (Deformed y)
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Stress Definitions

• These 

stresses are 

referred to 

deformed 

coordinate 

system.

• Subscripts 

may be 

confusing.
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Verification

• Stretched a flat membrane and then rotated it as a 
rigid body. The stresses shouldn’t change.



Horizontal



Rotated 30 degrees
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Effect of Twist on Boundary Shape

• Twist causes the roller wrap to increase at one 

edge and decrease at the other. 

• Relaxed shape a parallelogram.

• CD curvature of the boundaries, due to the helical 

path on the roller surfaces is not taken into 

account. It’s very small. 

• Iterative procedure for finding intersection of web 

with roller available on request.



Boundary Defect

• It is usually assumed that the relaxed shape of the 
web is a thin rectangular sheet. However, the 
boundaries that we see when looking at a process 
line apply to the web AFTER it has been stressed 
and distorted. So the shape of the relaxed web, 
which is actually the thing being analyzed, is not 
really known in advance. 

• Not very important in twisted web. But, FEA 
solver makes the correction easy. So, it will be 
included 



Boundaries

• Twisting is done at 

the upstream 

boundary .

• Previous span 

assumed to be in a 

state of pure MD 

stress and rotated 

(without twisting) 

into alignment with 

the upstream 

boundary



Boundary Conditions

• Generally need three at each edge.

• Upstream roller

– x-displacement, u = 0

– y-displacement same as Poisson contraction in 

previous span plus rotation.

– z-displacement to rotate web in combination with y-

displacement.

• The y displacement is tricky



Upstream condition for v

• The Poisson contraction in the previous span is 
related to v by the nonlinear strain relation 
described earlier.

• εo is the x-axis strain in the previous span.

• This is treated as an ordinary differential equation 
and solved for v. The y derivatives of u and w are 
zero in the upstream span.
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Upstream condition for v & w

• v at the upstream boundary is then,

• θ is the angle of twist.

• w is made a function of v and θ to produce the 

twist.

 1 2 cosov y y   

 1 2 sinow y   



Upstream condition for v & w



Downstream conditions

• The web is held fixed in the z direction. So,

• In the y direction the normal entry rule is used.

– in a steady state, the path of a particle in the web aligns 

itself with the direction of the roller surface velocity 

(normal to the axis of the roller) .

• The direction of a particle path is defined by the 

direction cosines.
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Downstream conditions

• Referring to the table of direction cosines, the 
particle path vector is,

• The tangent of the angle of entry is therefore,

• Interesting to note this is same result as in 2005 
paper, using a completely different method.
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Downstream conditions

• In the x direction the normal strain rule is used.

– In a steady state, the ratio of the stretched lengths of an 

infinitesimal patch of the web at two successive rollers 

is proportional to the respective ratios of the web 

velocities at the two rollers. This can be stated 

mathematically as,

– Vd is the downstream velocity, Vu is the upstream 

velocity, εxu is the upstream strain and εxd is the 

downstream strain.
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Downstream conditions

• So, the condition in the x direction becomes

• εxx is the downstream strain normal to the axis of 

the roller, εxo is the strain at the entrance to the 

upstream roller, Vd is the downstream surface 

velocity and Vu is the upstream surface velocity. 
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Edge conditions

• At the edges, both the normal and tangential 

stresses are zero. 

• In each case the total stress projected onto the y 

axis must be used (the terms inside the brackets of 

the y derivatives in the equation of equilibrium). 

So,
 1 0x xy y yu u   
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Edge conditions

• There is no y derivative in the model equation that 
defines w . 

• This implies that the y variation in w is completely 
determined by the x derivative and the conditions 
at the other boundaries. 

• In other words, the boundary conditions on w at 
the rollers define a surface to which the membrane 
conforms.

• It is possible with FlexPDE to specify this 
requirement and allow it to solve for the surface.



Typical Results 1

Principal minimum stress

(CD) 

PET web

Twist = 5 degrees

Length = 0.108 m

Width = 0.152 m

Thickness = 23.4e-6 m 

Modulus = 4.13e9 Pa

Tension = 26.7 N, 

 = 0.3, 

Diameter = 0.0736 m. 



Results 2

Principal 

maximum stress

(MD)

Same web as in 

previous slide



Results 3

CD Stress for same 

web as before except 

L = 0.432 m



Results 4

MD Stress 

L = 0.432 m



Hypothesis to explain compressive 

stress

Projection of 

deformed 

boundaries on x-y 

plane.

Checked by 

eliminating normal 

entry in two ways.



Comparison with experiment

• Good and Straughan performed a series of 

excellent experiments in which they increased the 

angle of twist until wrinkles occurred. 

• Developed a model (G-S) based on parabolic 

shaped MD stress profile applied to the ends. 

• Used Timoshenko’s critical stress, cr, for 

buckling of a cylinder to predict the angle of 

wrinkling, cr



Comparison with experiment 1

 

 L 
(m) 

xx 

(Mpa) 

cr 

(Deg.) 

cr 

(Mpa) 

yG 

G-S 
Flat 

(Mpa) 

yF 

FEA  
Twisted 

(Mpa) 

yG/yF cr/L 
(Deg./m) 

1 0.108 15 4.1 -1.59 -1.85 -0.86 2.2 38 

2 0.108 30 4.6 -1.59 -2.33 -1.1 2.1 43 

3 0.464 15 10 -1.59 -2.0 -0.27 7.4 22 

4 0.464 30 9.8 -1.59 -1.92 -0.27 7.0 21 

 

PET

Width = 0.152 m,                        Thickness = 23.4e-6 m, 

Modulus = 4.13e9 Pa,                   = 0.3,

Roller diameter = 0.0736 m,        Uncoated aluminum surface



Comparison with experiment 2

 

 L 
(m) 

xx 
(Mpa) 

cr 
(Deg.) 

cr 
(Mpa) 

yG 

G-S 
Flat 

(Mpa) 

yF 

FEA  
Twisted 

(Mpa) 

yG/yF cr/L 
(Deg/m) 

5 0.127 5 2.7 -1.21 -0.76 -0.28 2.7 21.3 

6 0.127 15 3.0 -1.21 -0.94 -0.35 2.7 23.6 

7 0.127 25 3.0 -1.21 -0.94 -0.35 2.7 23.6 

8 0.432 5 7.4 -1.21 -1.29 -0.18 7.2 17.3 

9 0.432 15 8.8 -1.21 -1.82 -0.26 7.0 20.4 

10 0.432 25 9.0 -1.21 -1.90 -0.28 6.8 20.8 

11 0.584 5 10.8 -1.21 -1.28 -0.21 6.1 18.5 

12 0.584 15 11.8 -1.21 -1.53 -0.25 6.1 20.2 

13 0.584 25 12 -1.21 -1.59 -0.27 5.9 20.5 

 0.584 5 10.5 -1.21 -1.21    

 

PET 

Width = 0.152 m,                         Thickness = 17.8e-6 m, 

Modulus = 4.13e9 Pa,                    = 0.3, 

Roller diameter = 0.0736 m,         High friction coating 



Comparison with experiment 3

 

 L 
(m) 

xx 

(Mpa) 

cr 

(Deg.) 

cr 

(Mpa) 

yG 

G-S 
Flat 

(Mpa) 

yF 

FEA  
Twisted 

(Mpa) 

yG/yF cr/L 
(Deg./m) 

14 0.127 13 1.7 -0.96 -0.65 -0.22 3.0 13.5 

15 0.127 26 2.1 -0.96 -0.99 -0.25 4.0 16.5 

16 0.127 40 2.7 -0.96 -1.63 -0.58 2.8 20.5 

17 0.584 13 6.5 -0.96 -1.00 -0.16 6.3 11.1 

18 0.584 26 7.8 -0.96 -1.44 -0.23 6.3 13.4 

19 0.584 40 7.9 -0.96 -1.48 -0.24 6.2 13.5 

 

PEN 

Width = 0.152 m,                              Thickness = 6.6e-6 m, 

Modulus = 8.87e9 Pa,                        = 0.3,

Roller diameter = 0.0736 m,              High friction coating



Comparison with experiment 4

 

 L 
(m) 

xx 

(Mpa) 

cr 

(Deg.) 

cr 

(Mpa) 

yG 

G-S 
Flat 

(Mpa) 

yF 

FEA  
Twisted 

(Mpa) 

yG/yF cr/L 
(Deg./m) 

20 0.127 3.9 3.5 -0.28 -0.11 -0.036 3.1 27.6 

21 0.127 13.1 5.0 -0.28 -0.21 -0.076 2.8 39.4 

22 0.584 3.9 13.5 -0.28 -0.17 -0.025 6.8 19.7 

23 0.584 13.1 15.0 -0.28 -0.20 -0.032 6.3 22.4 

 

Polyethylene

Width = 0.152 m,                                   Thickness = 50.8e-6 m

Modulus = 0.34e9 Pa,                              = 0.3,

Roller diameter = 0.0736 m,                   High friction coating



Conclusions 1

• The FEA model shows significantly lower levels 

of CD compressive stress at the critical angle than 

the G-S model. They are 1/3 to 1/7 as large.

• With the exceptions of tests 1, 2 and 16, the FEA 

model produced CD stresses that varied less with 

tension and span length.



Conclusions 2

• The ratio of the stress magnitudes between the two 

models changes with span length. For a given 

length, the ratio is approximately the same across 

all the tests. This may be due to the difference in 

the behavior of the MD stress profiles in the two 

models. The FEA model tends to have a parabolic 

stress profile throughout its length whereas the G-

S model does not. The difference becomes more 

significant for long spans.



Conclusions 3

• Both models show very little change in CD stress 

levels with tension.

• There is currently nothing in the FEA modeling 

technique to detect CD elastic instability. More 

work should be done to incorporate the features of 

the von Karman equations.



Conclusions 4

• It should be emphasized that the G-S model is still 

the best tool available for predicting the onset of 

wrinkling with twist. It may overestimate the 

magnitude of the CD stress. But if that is the case, 

the buckling criterion must be doing the same 

thing because the results agree well with 

experiment. 



Slipping 1

• Twist angle changed very little with tension in the 
Good-Straughan tests, except in a few cases where 
both friction and tension were low.

• Good and Straughan suggested that low friction
between the web and roller might have allowed
troughs to flatten at the roller. This conclusion is
supported by the graph in the next slide, which
shows a plot of the magnitude of the stress and
friction rates at each point across the web.

• It is based on unpublished work by the author.



Slipping 2



Thank you


