
1

A New Method for Analyzing the 

Deformation and Lateral Translation 

of a Moving Web

IWEB 2005

J. L. Brown

Essex Systems
© 2005 𝐽𝑒𝑟𝑎𝑙𝑑 𝐵𝑟𝑜𝑤𝑛



Overview

It’s based on:

• Nonlinear elasticity theory (sometimes called finite 

deformation theory).

• Two boundary conditions for the downstream roller. One 

is an extended version of the normal entry rule and the 

other is new. 

• Use of a general-purpose FEA partial differential equation 

solver to produce numerical solutions for stress and 

deformation fields throughout spans.



The Usual Assumptions Are Made.

• Traction locks the web to the roller at the entry point so 

that the span is isolated from changes downstream.

• The web slips loose in a short zone at the exit of a roller as 

it comes under the influence of the next span.

• The turning torque of the rollers is negligible.

• Viscoelastic and inertial effects are neglected.



Something’s Been Missing

• There is the normal entry rule which is an accepted general 

principle.

• But, one more general rule seems to be needed.

• There is a clue in the fact that experienced web handling 

practitioners often resort to the following qualitative idea.



Mass Flow

This concept has been used for many years [Notably by Feiertag in his 

semiannual WHRC seminar] to explain the spreading action of tape 

bumpers. But, it has never been incorporated into a comprehensive, 

quantitative model.
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Spreading is sometimes 
explained this way.

Higher speed at the edges 
than the center changes the 
stress distribution in such a 
way that the normal entry 
rule can be satisfied only if 
the web spreads laterally.



Earlier work

• Shelton recognized the role of conservation of mass in his 

1968 dissertation. He used it as an intuitive proof of the 

zero moment condition that he had discovered through 

experiment.

• Swanson in his 1997 IWEB paper on web spreading 

devices recognized that mass flow and the normal entry 

rule interact to produce spreading on a concave roller.

• He used the mass flow concept to estimate the end moment 

of a beam model for a web on a tapered roller.



Earlier work

• Markum and Good in a 2001 IWEB paper refined 

Swanson’s experiment and developed a similar beam 

model.

• They used the mass flow concept as Swanson had and 

developed a similar beam model that predicted the 

observed separations within 5 to 20%.

• Data from these experiments will be used as a test of the P. 

D. E. model.



Particle Displacements

Displacement in x direction = u

Displacement in y direction = v



Definitions of Angular 

Displacements

Angular displacement of x coordinate

Angular displacement of y coordinate
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Definitions of Strain
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Interpretation of Rotation

du = - 0.1 dx

dv = + 0.1 dy
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Definitions of Strain

• Longitudinal strain

• Cross web strain

• Strain normal to web plane
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Deformed Coordinates

Deformed x coordinate

Deformed y coordinate

x u  

y v  



Definitions of Stress

X-axis

Y-axis

Shear
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Novoshilov’s Equilibrium Equations 

for Small Rotations

Equilibrium of forces in x direction

Equilibrium of forces in y direction
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Conversion From Undeformed to 

Deformed Coordinates

Deformed x coordinate, 

Deformed y coordinate, 

 1 x yd dx u dy   

 1x yd v dx dy   



Reference Geometry for Misaligned 

Roller

Particle starting at 
“a” will follow 
curved trajectory 
that is straight in the 
relaxed web.
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Relaxed web aligned 

with x-axis.



Normal Entry Rule

y is  the angle of a 

vector tangent to 

particle path.
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Normal Entry Rule

For uniform web y = constant and dy = 0

So,
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Using the equations that define the deformed 

coordinates in terms of x and y,



Normal Strain Rule

Start by considering the mass flow at upstream and downstream 

rollers through increments of width that were equal to dy in the 

relaxed web. The mass flows must be equal. However, 

and                      .
u d 

u ddA dA

dy(1 + yu)
dy(1 + yd)

h(1 + zd)h(1 + zu)

dAu dAduVu

dVd

Particle paths perpendicular to dAu and dAd

because of normal entry rule.

mass flow at upstream

roller = uVu(dAu)

mass flow at downstream

roller = dVd(dAd)



Normal Strain Rule
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Vu = Upstream velocity

Vd = Downstream velocity
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Normal Strain Rule

Equating Qo to Qi and solving for xd ,

So, at the point of entry onto a roller, the steady state 

component of strain normal to the roller axis is a function 

only of the ratio of the circumferential velocities of the 

rollers at the ends of the span and of the longitudinal strain 

at the entry to the upstream roller.

And there are no approximations in this relationship other 

than those underlying elasticity theory.
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Normal Strain

• Thus, the unremarkable fact that the mass of a 

piece of web doesn’t change when it’s stressed 

leads to a boundary condition that seems quite 

surprising when viewed from the standpoint of 

elasticity theory.

• The other strains, y and z also change. But, they 

factor out of the relationship because of their 

effect on density.



Profile Displacement

• When the web is displaced laterally on a 
nonuniform roller, the displacement must be taken 
into account when determining the effect of the 
profile.

• The problem may be eliminated in a P. D. E. 
solver by using (y + v) to define Vd in the normal 
strain relation. When this is not possible, a 
recursive calculation may be used in which the 
displacement caused by the profile is used to 
recalculate its relative position.



Application of the Boundary 

Conditions to a Misaligned Roller

The first test of the P. D. E. Model is a comparison 

with Shelton’s 1968 dissertation which provided 

experimental verification of a very effective beam 

theory model.



Boundary Conditions

y

x

Upstream 

roller

Downstream 

roller

Relaxed web

Uniform 

strain, 

Boundary "a" Boundary "b"

Span
   2

Span
   1

Boundary "c"

Boundary "d"

 

At “b”
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Elastic Curves for Long Spans

 Solid lines – Shelton

Data points – P. D. E.

At KeL = 0 the inputs 

are not exactly the

same.

Without nonlinear 

terms, P. D. E. results 

would all look like 

curve for KeL = 0



Elastic Curves for Short Spans

 
Solid lines – Shelton

Data points – P. D. E.



Example of P. D. E. Model Results
Principal Minimum Stress

 L = 4 m

W = 1 m

x = 6.5e6 Pa

E = 3.1e9 Pa

 = .35

qr = 0.5 deg



Example of Output From P. D. E.
Principal Minimum Stress

 



Comparison With a Tapered Roller 

Experiment

• Markum and Good performed an experimental 

evaluation of a concave roller by splitting a web as 

it exited an upstream roller and measuring the 

separation at the spreader. Although it was done to 

evaluate spreading behavior, it is effectively a 

tapered roller experiment.

• It’s documented well and provides a good test of 

the P. D. E. model.



Application of Boundary Conditions 

to a Tapered Roller
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Tapered Roller Boundary Conditions
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For this case, the normal strain rule can be expressed

in terms of a function of the fractional difference in the roller 

Diameters – Du , upstream and Dd , downstream.

And So,

Where o is the longitudinal strain from the previous span.



Tapered Roller Boundary Conditions

• Markum and Good’s best results were obtained with their 

“parabolic 2” profile. The concave roller surface was cut 

with a circular arc of radius Ro = 10.16m. The center 

diameter, Dc was 55.5mm. The diameter as a function of y

is approximated mathematically as,

• This roller had a maximum surface depth of 0.28mm at the 

center, relative to the location of the web edge.
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Comparison of Results

• The first is the experimental data.

• The second is from Markum and Good’s beam model.

• The third is from an enhancement of Markum and Good’s 

model that uses recursion to compensate for profile 

displacement.

• The fourth is from the P. D. E. model.

Four sets of results will be presented.



Comparison of Results

Measured Beam Pct Recursive Pct P. D. E. Pct

Separation Model Error beam 

model

Error model Error

2(Ys) (m) relative to (m) relative to (m) relative to

(m) measured measured measured

1 0.0079 0.0072 -8.30% 0.008 1.33% 0.00792 0.25%

2 0.0075 0.0067 10.4 0.00737 -1.74 0.00702 -6.4

3 0.0031 0.0026 -17.8 0.00264 -14.9 0.00274 -11.6

4 0.0027 0.0024 -10 0.00256 -5.03 0.00255 -5.56

#

Modulus Caliper Width Length Tension Profile Profile

(MPa) (m) (m) (m) (N) Radius f(y)

(m)

1 LDPE 165.5 25.4 0.152 0.419 8.9 10.16 .02776 + 

.0492y
2

2 “ “ “ “ 0.419 17.8 “ “

3 “ “ “ “ 0.242 8.9 “ “

4 “ “ “ “ 0.242 17.8 “ “

# Material



x Field From the P. D. E. Model

There is a nice symmetry in the x field. A plot of the 
displacement would show that this is because the 
deformed web has a symmetrical “s” shape. Stresses are 
in Pascals.



min Field From the P. D. E. Model

• The minimum principal stress, min , shows that the assumption of y

<< x , used to estimate the end moment is valid. [min is very nearly 

equal to y because the principal angle is only a few degrees off the x-

axis.]

• And as one would expect, there is no compressive stress (shown 

shaded) near the downstream roller. Stresses are in Pascals.



Conclusions

 It is founded on basic elasticity theory in a way that 

permits the use of general-purpose numerical methods to 

rapidly solve the partial differential equations.

 It introduces a rigorous definition of the normal entry rule 

suitable for use with elasticity theory.

 It introduces a new boundary condition for the downstream 

roller that has the same range of application as the normal 

entry rule.

A new method for solving problems involving deformation 

and translation of moving webs is now available. 



Conclusions

 It shows that so long as traction is maintained, the controlling 

conditions at the entry to a roller are fundamentally geometric with 

stresses only controlling the relationships between the strains that 

govern particle paths and mass flow.

 It has been shown to produce solutions that are in agreement with 

experimental results reported for both misaligned and tapered rollers.

 It is capable of providing detailed descriptions of stress and 

deformation fields throughout web spans.

 It can be used to identify relationships that help in the creation of 

simplified models.


