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ABSTRACT 

A new method of analysis is applied to three problems that have resisted detailed 

solution. These are: 

1. Concave roller 

2. Curved-axis roller  

3. Cambered web (Curvature of the relaxed web along its longitudinal axis) 

In the first two of these, the primary interest is the stress/strain field near the 

downstream roller. In the third, the primary interest is the lateral translation. In all cases it 

is useful to have information on the stress field throughout the span to evaluate the 

potential for damage and wrinkling. 

For each case, the normal strain and normal entry rules are used to develop 

downstream boundary conditions that can be used with a nonlinear version of the theory 

of elasticity for two-dimensional plane stress. A finite-element partial differential 

equation solver is used to develop steady-state solutions that include stress/strain fields 

and displacements throughout the spans. 

Along with specific numerical examples, there is a discussion of implications for such 

things as wrinkling, spreading, lateral translation and overstressing. 

A major advantage of the new method is that it provides a new way of looking at 

problems that will facilitate other approaches to modeling. This is illustrated by 

developing a beam theory model for cambered webs. 

 

 



 

INTRODUCTION 

The method of analysis for this work, called the P. D. E. model, is described in 

another paper [1] presented at this conference. It is based on a nonlinear form of two-

dimensional elasticity theory and uses two boundary conditions for the downstream 

roller. One, called the normal strain rule is new. The other is an extended form of the 

normal entry rule. The purpose of this paper is to provide illustrative examples of how 

this new method can used to explore applications by analyzing the following: 

1. Behavior of a concave roller 

2. Behavior of a curved-axis roller 

3.  Behavior of a cambered web (Curvature of the relaxed web along its 

longitudinal axis) 

In addition, insight gained from a P. D. E. model, is used to develop a beam model for 

cambered webs using methods similar to those of Shelton[2] in his work on the 

misaligned roller. The two models are compared and shown to be in excellent agreement. 

The P. D. E. solver software for this work, running on an ordinary 2.8 GHz PC, 

produced solutions to problems in times ranging from 1 to 10 minutes.   

NOMENCLATURE 

 A Cross sectional area of web, m2 

 D Roller diameter, m 

 G Shear modulus, Pa 

 h Web thickness, m 

  I Moment of inertia, m4 

L Length of span, m 

M Moment, Nm 

N Force, N 

 Qi Mass flow rate per unit of relaxed area at upstream roller, Kg/s 

 Qo Mass flow rate per unit of relaxed area at downstream roller, Kg/s 

 Rw Radius of camber of relaxed web, m 

 T Tension, N 

 Tavg Cross web average of tension, N 

 u Particle displacement in x direction, m 

 uy Derivative of u with respect to y 

 v Particle displacement in y direction, m 

 vx Derivative of v with respect to x 

 Vy Velocity in the y direction, m/s 

 Vu Surface velocity of upstream roller, m/s 

 Vd Surface velocity of downstream roller, m/s 

 W Width of web, m 

 yc y displacement relative to y = 0, m 

 y’ y displacement relative to curve of camber, m 

     xy Elastic shear strain 

 Elastic strain 

o Longitudinal strain at entry of upstream roller 

  Deformed y coordinate, m 

 r  Angle of misaligned roller axis relative to y-axis (CCW positive), radians 

 c Angle of camber (inclination of downstream end relative to x-axis), radians 



 

 Poisson’s ratio 

  Deformed x coordinate, m 

    Stress, Pa 

n    Stress normal to a boundary, Pa 

xy Shear stress in x,y plane, Pa 

 Angle of tangent to particle trajectory of web (in relation to x-axis), radians 

 z Elastic rotation in x,y plane 

Subscripts  

 u Upstream 

 d Downstream 

 x Aligned with x-axis 

 y Aligned with y-axis 

 z Aligned with z-axis (normal to web plane) 

 b Displacement due only to bending 

 s Displacement due only to shear 

ASSUMPTIONS 

For this analysis, air film effects are ignored and it will be assumed that friction 

controls traction between the roller and web. The usual assumptions are made about the 

behavior of the web when it is on the roller. At the entry point, friction locks it onto the 

roller surface. Any strains existing at the point of entry are then frozen in place and 

remain fixed relative to the roller surface until the web reaches a zone at the exit where it 

begins to slip from the roller under the influence of stresses downstream. And the lines of 

contact at entrance and exit are assumed to be parallel to the roller axis. The turning 

torque of the roller is small in comparison to web tension and the “stick zone” will be a 

large percentage of the contact area. Under these conditions, the stresses in the upstream 

span are isolated from changes downstream.  

Other assumptions: Viscoelastic and inertial effects are not significant. Thickness and 

material properties are constant in the longitudinal direction.  

EARLIER WORK 

Shelton [2] laid the groundwork for beam theory modeling of webs in his 1968 

dissertation. Development of the cambered web model, presented here, follows his 

example.  

Swanson [3] in his 1997 paper on web spreading devices provided a definitive 

demonstration of the spreading action of a concave roller by positioning a slitting blade 

immediately before the span he was observing. He used this to separate an inch of the 

web (0.8 mil PET) at the edge and measured the displacement of this piece at the 

downstream roller.  

Swanson [4] in a later paper attempted to determine through experiment and analysis 

the boundary conditions and basic principles that could be used to extend beam models to 

include non-uniform webs. This work confirmed earlier observations that cambered webs 

deflect toward the slack edge (the convex side) and established bounds on values for an 

end moment that might account for the behavior. 

Shelton [5] provided a good survey of the problems of cambered webs and provided 

qualitative insight by comparing their behavior to uniform webs on tapered rollers. 



 

Markum and Good [6] confirmed Swanson’s observations on the effect of a concave 

roller and developed a beam model that provided an estimate of the lateral displacement.  

Olsen [7] proposed a beam model for non-uniform webs in which the camber was 

assumed to be induced by frozen-in strain. 

PLANE STRESS DEFINITIONS 

The following equations for plane stress are taken from Novoshilov’s [8] simplified 

nonlinear theory for small rotations. 

Displacements from the relaxed coordinates x and y are u and v, respectively. Strains 

are, 
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Deformed coordinates are, 

 x u        (8)                y v      (9)     

Assuming Hook’s Law, the stresses may be expressed in terms of strains, Poisson’s 

ratio, μ, and modulus of elasticity, E, as follows. 

The x-axis stress is:  
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 The y-axis stress is:  
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The equations of equilibrium are:   
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Another useful relationship is the expression that relates the x and y components of 
length of an infinitesimal line element before and after deformation. 



 

  1 x yd dx u dy      1x yd v dx dy     (15) 

BOUNDARY CONDITIONS 

Boundary conditions at a downstream roller will be based on the normal entry and 

normal strain rules [1], 

  Normal Entry:    
1

1tan 1 1x y x y rv dx dy dx u dy   


           
 (16) 

where  is the angle of a vector tangent to a particle path in the web and 

 Normal Strain1:  1 1u

x o

d

V

V
     .  (17) 

For a uniform web, (16) reduces to, 

  1 1tan (1 )x x x rv v     .  (18) 

Vd and Vu are, respectively, the downstream and upstream roller surface velocities and it 

is understood that these may be a function of y. εo is the longitudinal strain at the entry to 

the upstream roller and may also be a function of (y + v) if the roller is nonuniform. 

A COMPARISON OF A CONCAVE AND CURVED-AXIS SPREADER 

ROLLERS 

A concave roller has a straight axis but a nonuniform diameter - smaller in the middle 

than at the edges. The depth profile is usually circular. The curved-axis roller has a 

uniform diameter. But, the axis is curved so that particle paths encounter a roller angle 

that increases with distance from the centerline. 

The concave and curved-axis rollers could be named by the boundary condition that 

causes the spreading. In the case of the concave roller it would be called a normal strain 

spreader and in the case of the curved-axis roller it would be called a normal entry 

spreader.   

A concave roller and a curved-axis roller will be compared in identical circumstances. 

The model parameters will be the same as one of the cases studied by Markum and Good 

[6] in their investigation of a concave roller. They evaluated spreading by splitting a web 

as it exited the upstream roller and measuring the separation at the spreader. The concave 

roller profile will be the same as Markum and Good’s Parabolic Roller 2. The radius of 

curvature for the axis of the curved-axis roller will be chosen by trial-and-error to 

produce the same maximum spreading action as the concave roller. The test parameters 

are shown in Table 1. The maximum profile depth in one web width is 0.28 mm. 

 

 

 

 

 

                                            
1 This is based on approximation 1(1 ) (1 )x x      



 

Boundary a 

Rc = 

10.16m

Boundary b

Span 1 Span 2
x

y

Du = .05569m Dd =      + 0.0555mRc

y 2

0.419m

0.152m

Material Modulus 

(Mpa) 
Caliper 

(m) 

Width 

(m) 
Length 

(m) 
Tension 

(N) 
Profile 

Radius 

(m) 

Profile 

F(y) 

LDPE 165.5  25.4  0.152 0.419 17.8 10.16 .02776 

+ 

.0492y2 

Table 1 

Test parameters for Markum and Good experiment 

Boundary Conditions for the Concave Roller 

 

 

 

 

 

 

 

Figure 1 

Concave roller 

Two boundary conditions are needed for each of the four boundaries. 

The sides are assumed to be unconstrained. So, for those boundaries the normal and 

tangential stresses will both be zero. Therefore, 

 0n         0n   . (19) 

Boundary conditions at boundary “b” will be the normal entry and normal strain rules. 

 0xv   (20)  1 1u
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d

V

V
     . (21) 

Equation (21) may be put into a more convenient form if Vd is expressed as a fraction of 

Vu. And since a non-uniform roller will cause this ratio to vary with distance from the 

roller centerlines, Vd  can be expressed as a function of the fractional difference in roller 

diameters. If f(y) is defined as,  
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where, Dd and Du are the respective diameters of the downstream and upstream rollers 

and y is the distance from the roller centerlines. Then,  
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Note that the deformed y coordinate, η = y + v, may be used as the independent 

variable for f(y) where solution method allows it. This is done for the results reported 

here. 
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It will be assumed that span 1 is in pure tension with uniform, aligned rollers. So, the 

displacements at the entry to the upstream roller will determine the boundary conditions 

at “a”. These are 

 
ov y   (25) 0u   . (26) 

The roller profile in the Markum and Good experiment was a circular arc. The roller 

diameters and profile radius in Figure 1 have been chosen to match their values. Using 

these values equation (22) becomes, 

    1 2(1.767 ) .00340f y m y  .  (27) 

Boundary Conditions for the Curved-axis Roller 

 

 

 

 

 

 

 

Figure 2 

Curved-axis roller 

Two boundary conditions will again be needed for each of the four boundaries.  

The sides are assumed to be unconstrained. So, for those boundaries the normal and 

tangential stresses will both be zero. Therefore, 

 0n         0n   (28) 

where n is the stress normal to the boundary and τn is the shear stress tangent to the 

boundary. 

Boundary conditions at “b” will be the normal entry and normal strain rules,
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It will be assumed that span 1 is in pure tension with uniform, aligned rollers. So, the 

displacements at the entry to the upstream roller will determine the boundary conditions 

at “a”. These are 

     ov y    (31) 0u   . (32) 

Results 

One way to look at the spreading action of these rollers is to subtract out the Poisson 

contraction due to longitudinal stress. This can be done by using the constitutive equation 

(11). The net spreading strain, s is due solely the cross web stress y. Therefore, 

       
21

y s y x
E


   


    (33) 



 

Figure 3 shows very little difference in the way the two rollers distribute the 

spreading. In both cases it drops off in a parabolic fashion from a peak in the middle to 

zero at the edges. 

The y displacements are compared in Figure 4. The contours are not particle paths. 

But, they have similar slopes. The cross web stresses are shown in Figure 5. The curved-

axis roller shows compressive stress. However, the levels are not high. There is also an 

area of compressive stress for the concave roller that is just beyond the area shown in the 

graph. It has a pattern similar to that of the curved-axis roller with an extreme of only – 

825 Pa. 

The curved-axis roller had a radius of 21m. The concave roller had a profile radius of 

10.16m and a minimum diameter of 55.5mm. 

 

 

 

 

 

 

 

 

Figure 3 

 Comparison of spreading by Concave and Curved-Axis rollers  

 

 

      

 

 

 

 

 

 

Figure 4 

Comparison of y displacement, v, for concave and curved-axis rollers 

 

 

 



 

 
 

 

 

 

 

 

 

  

 

 

 

Figure 5 

Comparison of cross web stress (Pa) for concave and curved-axis rollers 

 

Magnification of Lateral Errors 

There has been a presumption that because of the lateral shifts seen with tapered 

rollers, concave rollers would destabilize lateral registration. This was investigated by 

repeating the model calculations with a shift in the centerline of the profile. The result 

was that the centerline of the web moved opposite to the direction of profile shift. The 

shift was approximately – 11.6% of the profile shift. This relationship held for shifts up 

to ½ web width. Another way to think of it is that if the web shifted laterally by 1 inch at 

the upstream roller, it would shift in the same direction by 1.116 inch at the concave 

roller. When the roller profile radius was doubled, the ratio decreased to –5.5%. So, while 

it is true that the spreader magnifies any change in the upstream lateral position, the effect 

can be quite small if the spreading is kept modest. 

 There has never been any reason to suspect curved-axis rollers of destabilizing lateral 

registration. But, for the sake of curiosity this was investigated with the P. D. E. model by 

rerunning the parameters of the curved-axis roller with a shift in the centerline of the 

profile. The result was that, just as in the case of the concave roller, the centerline of the 

web moved opposite to the direction of profile shift. The shift, however, was significantly 

less. It was approximately –1.5% of the profile shift as opposed to –11.6% for a concave 

roller with the same spreading ability. This relationship also held for shifts up to ½ web 

width.  

When the maintenance problems of curved-axis rollers are considered, a concave 

roller might often be a better choice. 

APPLICATION TO A CAMBERED WEB 

The analysis begins by assuming that a cambered web is created on a tapered core in 

the manner described by Swanson [3]. The roll is assumed to be formed in such a manner 

that the relaxed web will pay off from the roll with its edges normal to the roll axis. 
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Figure 6 

Normal Strain in a Cambered Web 

Normal Strain Boundary Condition 

The mass flow of the web at the line of exit from the unwinding roll will be, 

   o

o o o

o

R y
Q V dy h

R



  (34) 

where Ro is the radius of the outer edge, Vo is the surface velocity at the outer edge and y 

is the distance from the outer edge. 

The mass flow at the entry to the first roller will be, 

    1 1 1 1 11 1y zQ dy h V       (35) 

where y1 and z1 are the y and z strains at the entry to the first roller, 1 is the density at 

the first roller, V1 the circumferential velocity of the roller and h the web thickness. And 

using the mass density relationship, 
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Q1 becomes, 

 
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1 1 11o xQ dy hV 


   (37) 

Equating Q1 and Qo and solving for x1 , the longitudinal strain at the entry to the first 

roller, 
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At y = 0, equation (38) may be solved for the strain at the outer edge of the web at the 

entry to the first roller. This will be called xo , 
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Substituting (39) into (38) yields, 
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Using the same procedure for the second roller, the mass flow is, 

  
1

2 2 21o xQ dy hV 


   .  (41) 

Equating Q1 and Q2 and solving for x2 , the longitudinal strain at the entry to the second 

roller, 

  2

2 1

1

1 1x x

V

V
      (42) 

And finally, if the value for x1 in equation (38) is substituted in (42), 
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So, in general, the expression for longitudinal strain at a downstream roller will be, 

 1 1d o

x xo

u o

V R

V R y
   


 (44) 

Where Vu and Vd are the upstream and downstream roller surface velocities and xo  is the 

value of longitudinal strain at the outer edge of the previous span. Looking back at the 

expression for x1 in (38), it is now evident that the strain relationship at the first roller 

following the unwinding roll is like the others except that xo is zero. 

 

 

 

 

 

 

 

 
Figure 7 

Parameters of Cambered Web for Development of Normal Entry Condition 

Normal Entry Boundary Condition 

With the P. D. E. method, all of the strains and displacements are defined in relation 

to the curved relaxed web. So, the normal entry rule will change to accommodate the fact 

that the particle trajectories of the relaxed cambered web are circular arcs. Starting with 

the defining equation for a the normal entry angle, equation (16), and since the relaxed 

trajectories are circular arcs of radius, r, 

  
1/ 2

2 2/ tandy x r x dx dx    . (45) 

At boundary “b”,  θ = θc  and the tangent of the normal entry angle is, 

     11tan 1 tan 1 tanx y c x y c rv u     


           
 (46) 

And equation (46) becomes, 

 tan (1 ) tan (1 ) tanr x y c x y cu v                (47) 



 

Solving for vx, 

    tan 1 tan 1 tanx r x y c y c r cv u                (48) 

where θc is the angle of camber and θr is the angle of the downstream roller. 

Boundary conditions for the two edges are the same as in the other problems except 

that the outward normal and tangential components of stress are not aligned with the x or 

y axes. So, for rectangular coordinates the conditions are as follows. 

 2 20 cos sin 2 sin cosn x y xy            (49) 

    2 20 sin cos cos sinn y x xyT             (50) 

n is the normal component of stress, Tn is the tangential shear and α is the angle of the 

boundary-normal in relation to the x-axis.  

Upstream Boundary Conditions 

At the upstream roller, the u displacement will be, 

 0u  .    (51)                     

If span 2 has been analyzed, the results for its downstream roller can be used for v. In 

many cases, it will be sufficient to estimate it as follows. The ratio of y to x at the exit 

of span 2 is usually much less than μ, which means that the v can be approximated as a 

function of the strain, ε’x at the exit of span 2. Furthermore, if the upstream roller is 

uniform, ε’x will be an expression similar to (43). 

 'xv dy C      .  (52) 

Since the only boundary conditions that control absolute position of the web are at 

boundary “a”, the constant of integration, C, may be chosen arbitrarily to position the 

web at a convenient location.  

Comparison with Swanson’s [3] Results 

An example is illustrated in Figure 8 . This is for one of the web geometries tested by 

Swanson: L = 2m, W = 0.3048m, E = 4.14e9Pa, Thickness = 23.4m, Average 

longitudinal tension, Tavg = 32.5N (Tavg is larger than Swanson’s value of 22N because the 

model indicates this is the value needed to avoid a slack edge), Rw = 139m. The P. D. E. 

model shows that when running, the web will move toward the convex side until it is 

almost straight with an offset from y = 0 of  –18.1 microns. All stresses are in Pascals. 

In general the P. D. E. model shows that 

When running between parallel rollers cambered webs become almost straight.  

The curvature at the downstream end becomes a small positive fraction of the 

relaxed value.  

The longitudinal tension profile will increase linearly from a low value on the 

convex side to a maximum on the concave side. 

For parallel rollers the cross web tension profile will be very uniform throughout the 

length of the span. 

There will be some compressive cross web stress near the downstream roller that 

worsens with roller misalignment.  



 

Some of the graphic data is shown in Figure 8. The offset of –18.1 microns does not 

agree precisely with Swanson’s experimental results. He measured - 0.3 mm. However, it 

should be observed that 0.3 mm is only 2.0% of the initial displacement due to camber, 

Yo = 14.4mm. So, his experiment correctly showed that the web became nearly straight. 

And this was evident in all of the nine experiments tabled in the paper. Furthermore, he 

correctly predicted that the curvature at the downstream roller would be between 0 and 

1/Rw. 
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Figure 8 

Results for Cambered Web 

(a)  Minimum principal stress near downstream roller (b) Contours of  

longitudinal stress  (c) Elastic curve (neutral axis relative to y = 0) 

There may also have been problems in the Swanson test due to the fact that the 

conditions upstream of the test span were not controlled well and/or because of the 
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difficulty of measuring such a small displacement on a moving web. There were actually 

two spans involved in the test. One was a very short run from the unwinding roll to the 

upstream roller of the main test span. Both of these were mounted on a four-bar linkage 

so that the side force could be measured. Although the tension in the main test span was 

carefully controlled, the tension between the unwind roll and the upstream roller was set 

by a friction brake with a manual adjustment. Therefore, the upstream conditions going 

into the test span are unknown. And as the foregoing analysis shows, this information is 

critical to predicting behavior of the test span. 

BEAM MODEL FOR A CAMBERED WEB 

A beam model is a useful adjunct to a P. D. E. numerical model. It can provide 

answers to many questions that are often adequate for applications. And it provides a 

conceptual framework for utilizing the P. D. E. results. So, one of the first things done 

with the P. D. E. model was to look for the fourth boundary condition necessary for a 

beam model solution. An obvious possibility is to use (43) to estimate the end moment. 

So long as y << x ,  x should be approximately equal to Eεx . This proves to be an 

excellent assumption. For example, for  L = .0762m; W = 0.3048 m; E = 4.14e9Pa; 

Thickness, h = 23.4 microns; Average longitudinal tension, Tavg = 327N; Rw  = 139m and 

r = 0, the P. D. E. Model shows the error in the moment to be only 0.002 %. Even at Rw 

= 7m, the error is only 0.003 %. 

 

 

 

 

 

 

 

Figure 9 

Cambered web analysis 
(a) Free body diagram  (b) Solution parameters 

The neutral axis offset, used in conventional curved bar theory and described in 

references such as Timoshenko [9], is important only for problems such as crane hooks 

that have large initial curvatures. For the curvatures experienced in web handling the 

offset is insignificant. Thus, development of the cambered model will begin with a 

uniform web model that will be transformed to the solution for a cambered web through a 

simple change of variable. One feature of curved bar theory that will be retained is the 

effect of longitudinal tension on curvature, introduced in equation (60). This adds a term 

to the solution that is important for a successful cambered web model. 

In the following development y’ will be used to indicate deflection of the uniform 

web under the influence of the cambered web boundary conditions and yc will represent 

the sum of y’ and the Yc offset due to camber.   



 

The free body diagram of Figure 9 (a) represents an infinitesimal segment of a 

uniform web under the influence of shear, longitudinal and bending stresses. The angle θ 

is assumed to be very small so that the forces N and N + ΔN are nearly parallel to the y-

axis and ds  dx. Summing moments, taking clockwise as positive. 

   0M M M Ndx     (53)       or        
dM

N
dx

  (54) 

Summing vertical forces taking +y as positive. 

         0N N N Td     (55) 

and since, 
2

2

'd y
d dx

d x
     

2

2

'dN d y
T

dx dx
   . (56) 

Next, following Shelton’s example [2], separate expressions for bending (subscript b) 

and shear (subscript s) will be developed. 

       
'sdy nN

dx AG
    (57) 

where n is the correction factor for parabolic shear distribution, A is the cross sectional 

area and G is the shear modulus. 

The action of the longitudinal force, T will increase angle d  by, 

      
Tdx

d
AEr

       (58)   

where r is the radius of curvature. And 

           
2

2

'1 bd y

r dx
      (59) 

So, taking into account the bending moment, M and the effect of (58) the total bending is,      

       
2 2

2 2

' 'b bd y d yM T

EI AEdx dx
    (60) 

where I is the moment of inertia. 

Conventional curved bar theory uses the initial curvature 1/r of the bar in the last term 

of (60) because the final curvature varies very little from the initial value. In this case, 

however, the bending is of the same magnitude as the initial curvature. So, the variable 

form of the curvature must be used. Now, since the total deflection is due to both bending 

and shear, 

       
2 22 2
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1b sd y d yd y d y nT
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Combining (61) and (60)         
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Next, substituting (62) in (54) differentiating once and equating with (56) 
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2
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1 1
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 . (64) 



 

The only difference between this expression and the one in Shelton’s dissertation [2] is an 

additional term in Kc to take better account of the effect of tension on curvature. For 

uniform webs the effect of T/AE is negligible. But, it is important for cambered webs. 

Finally, to transform (63) into the cambered web equation a change of variable is 

made. Camber can be interpreted as an offset in the y coordinate of a uniform web. 

       
2

' '
2

c c

w

x
y Y y y

R
        (65)  

where yc is the y coordinate of the cambered web relative to y = 0 and the x2 term 

approximates the arc of a circle with radius, Rw. Substituting this into (63) yields, 

       
4 2

2

4 2

' ' c

c

w

Kd y d y
K

Rdx dx
  . (66) 

Note that the dependent variable in this equation is still y’ rather than yc. So, when it is 

solved, equation (65) must be used again to yield the complete cambered web solution. 

The solution of (66) is, 

       
2

1 2 3 4' sinh cosh
2

c c

w

x
y C K x C K x C x C

R
        .  (67) 

Substituting the result into (65) yields, 

         1 2 3 4sinh coshc c cy C K x C K x C x C     (68)      

Boundary conditions are: 
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where r is the angle of the downstream roller, Tavg is the average longitudinal tension 

and L is the radius of curvature at the downstream roller. Note: the definition for the 

normal entry angle is r instead of r – c because of transformation (65). Using  (65) in 

(62) the curvature at the downstream roller is, 
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The average longitudinal tension, Tavg is found from (43) as,     
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And ML is found from (43) as  
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So, the fourth boundary condition is, 
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Solving for C1, C2 and C3,    
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Inspection of the coefficients reveals that each consists of two parts. One is 

proportional to the roller angle. The other (which will be called the camber term) is 

independent of the roller angle and proportional to end curvature,  /Rw. Furthermore, the 

roller angle terms are exactly the same as for a uniform web. This makes sense; because 

as Rw approaches infinity, the camber terms should approach zero as the cambered web 

becomes more like a uniform web. So, to understand the general behavior of the 

cambered web solution it is only necessary to characterize the effect of the camber terms 

and add them to the misaligned roller results. 

The change of variable made in equation (65) may be troubling to some. It looks like 

algebraic slight of hand. The thing to keep in mind is that it has been assumed that the 

slight curvature of the relaxed web has no effect on the size of the bending and shear 

deformations. Its main effect is to act as a y offset to the neutral axis of the beam. If the 

analysis had been carried without the variable change, it would have been possible to get 

the same result. But, the boundary conditions would have had to change in ways that 

might have been just as confusing. And it would have been necessary to add x2/(2Rw) to 

the result to account for the initial y offset. It could be rightfully argued that there must be 

some interaction between the initial curvature and the longitudinal tension. That is taken 

care of by the combined effects of new term that is introduced in equation (60) and the 

1/Rw term in (70).  

Normalizing the solution 

A good way to normalize (68) is to divide yc by the y displacement of the relaxed 

cambered web, L/(2Rw), (YL in Figure 7). This quantity can then be graphed so that the 

combined effects of camber and roller misalignment can be estimated. Before doing that, 

however, it is necessary to point out some important relationships between the key 

variables. To do this a new parameter, , is defined. It encompasses the main factors that 

determine longitudinal stress. 
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And a little algebra will show that, 
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and  
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Thus, it is possible to plot the camber portion of yc as a function of only  and L/W (n and 

 are treated as constants). 

For parallel rollers, the ratio of longitudinal stress at the concave edge compared to 

the average stress will be approximately, 
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The lateral force at the downstream end is, 
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Comparison of the Beam and P. D. E. models 

The solid lines in Figure 10 represent results from the beam model and the circles are 

data points from the P. D. E. model. Agreement between the two is excellent except for a 

slight deviation at L/W = 8 on the (1 - ) = 0.01 curve. In that case the P. D. E. model 

value is more likely right because it is more consistent with the curves below it. For 

values of (1 - ) > 0.01 both models should be used with caution because the magnitude 

of displacements, rotations or strains violate the assumptions of small deformation 

elasticity theory. 

In conclusion, cambered webs do not cause large lateral misalignment. They do cause 

compressive stresses in the cross web direction that can cause wrinkling. And they can 

cause large cross web gradients in the longitudinal stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 

Comparison of Beam and P. D. E. Cambered Web Models 

(Sign of the ordinate is reversed to facilitate logarithmic scaling.) 

- ycmax/YL 



 

CONCLUSIONS 

The scope of the individual studies in this paper was intentionally limited in favor of 

illustrating the range and versatility of the new method. But, it should be evident that: 

 It has been shown that the new method can be successfully applied to the 

following situations.  

o The spreading behavior of concave and curved-axis rollers, including stress 

fields near the downstream roller. 

o The deflection and deformation of a cambered web. 

o The development of a beam theory model for a cambered web. 

 The new method can evaluate the potential for damage to webs by producing 

precise and detailed descriptions of stress/strain fields throughout spans. 

  It is evident that much more can be done in exploring these and other 

applications. Additional simplified models can be developed and where that is 

not possible results can be tabulated for everyday use. 

Beyond illustrating the capabilities of the method, the following things have been 

accomplished. 

 A beam model of the cambered web has been developed and shown to produce 

the same results as the new method for small strains. 

 It has been shown that concave and curved-axis rollers behave very much alike 

and that concave rollers have an undeserved bad reputation. 

 It has been shown that camber in a web can produce large variation in 

longitudinal stress across the width, but it does not cause large lateral alignment 

errors. 
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